BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 22676388)

  • 1. Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus , Lactobacillus johnsonii , and Lactobacillus reuteri.
    Hole AS; Rud I; Grimmer S; Sigl S; Narvhus J; Sahlstrøm S
    J Agric Food Chem; 2012 Jun; 60(25):6369-75. PubMed ID: 22676388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extrusion of barley and oat improves the bioaccessibility of dietary phenolic acids in growing pigs.
    Hole AS; Kjos NP; Grimmer S; Kohler A; Lea P; Rasmussen B; Lima LR; Narvhus J; Sahlstrøm S
    J Agric Food Chem; 2013 Mar; 61(11):2739-47. PubMed ID: 23384149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fermentation adaptability of three probiotic Lactobacillus strains to oat, germinated oat and malted oat substrates.
    Herrera-Ponce A; Nevárez-Morillón G; Ortega-Rívas E; Pérez-Vega S; Salmerón I
    Lett Appl Microbiol; 2014 Oct; 59(4):449-56. PubMed ID: 24979232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Lactobacillus (L. acidophilus NCIB1899, L. casei CRL 431, L. paracasei LP33) fermentation on free and bound polyphenolic, antioxidant activities in three Chenopodium quinoa cultivars.
    Zhang J; Huang X; Cheng J; Wang C
    J Food Sci; 2023 Jun; 88(6):2679-2692. PubMed ID: 37199447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acid production from sugars and sugar alcohols by probiotic lactobacilli and bifidobacteria in vitro.
    Haukioja A; Söderling E; Tenovuo J
    Caries Res; 2008; 42(6):449-53. PubMed ID: 18931494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth and metabolism of selected strains of probiotic bacteria, in maize porridge with added malted barley.
    Helland MH; Wicklund T; Narvhus JA
    Int J Food Microbiol; 2004 Mar; 91(3):305-13. PubMed ID: 14984778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of growth, metabolism and production of potentially bioactive components during fermentation of barley with Lactobacillus reuteri.
    Pallin A; Agback P; Jonsson H; Roos S
    Food Microbiol; 2016 Aug; 57():159-71. PubMed ID: 27052715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the effect of malt, wheat and barley extracts on the viability of potentially probiotic lactic acid bacteria under acidic conditions.
    Charalampopoulos D; Pandiella SS; Webb C
    Int J Food Microbiol; 2003 Apr; 82(2):133-41. PubMed ID: 12568753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Goat's Milk, Barley Flour, Honey, and Probiotic to Manufacture of Functional Dairy Product.
    Ismail MM; Hamad MF; Elraghy EM
    Probiotics Antimicrob Proteins; 2018 Dec; 10(4):677-691. PubMed ID: 28836117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth studies of potentially probiotic lactic acid bacteria in cereal-based substrates.
    Charalampopoulos D; Pandiella SS; Webb C
    J Appl Microbiol; 2002; 92(5):851-9. PubMed ID: 11972688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro fermentation of oat β-glucan and hydrolysates by fecal microbiota and selected probiotic strains.
    Dong JL; Yu X; Dong LE; Shen RL
    J Sci Food Agric; 2017 Sep; 97(12):4198-4203. PubMed ID: 28244112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole-grain cereal products based on a high-fibre barley or oat genotype lower post-prandial glucose and insulin responses in healthy humans.
    Alminger M; Eklund-Jonsson C
    Eur J Nutr; 2008 Sep; 47(6):294-300. PubMed ID: 18633670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of lactic acid bacteria and Rhizopus oligosporus during barley tempeh fermentation.
    Feng XM; Eriksson AR; Schnürer J
    Int J Food Microbiol; 2005 Oct; 104(3):249-56. PubMed ID: 15979185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exogenous lactobacilli mitigate microbial changes associated with grain fermentation (corn, oats, and wheat) by equine fecal microflora ex vivo.
    Harlow BE; Lawrence LM; Harris PA; Aiken GE; Flythe MD
    PLoS One; 2017; 12(3):e0174059. PubMed ID: 28358885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supportive Role of Probiotic Strains in Protecting Rats from Ovariectomy-Induced Cortical Bone Loss.
    Montazeri-Najafabady N; Ghasemi Y; Dabbaghmanesh MH; Talezadeh P; Koohpeyma F; Gholami A
    Probiotics Antimicrob Proteins; 2019 Dec; 11(4):1145-1154. PubMed ID: 30014348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico prospection of Lactobacillus acidophilus strains with potential probiotic activity.
    Dias RS; Kremer FS; da Costa de Avila LF
    Braz J Microbiol; 2023 Dec; 54(4):2733-2743. PubMed ID: 37801223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extrusion of barley and oat influence the fecal microbiota and SCFA profile of growing pigs.
    Moen B; Berget I; Rud I; Hole AS; Kjos NP; Sahlstrøm S
    Food Funct; 2016 Feb; 7(2):1024-32. PubMed ID: 26758043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acid production in dental plaque after exposure to probiotic bacteria.
    Keller MK; Twetman S
    BMC Oral Health; 2012 Oct; 12():44. PubMed ID: 23092239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of potentially probiotic beverages using single and mixed cereal substrates fermented with lactic acid bacteria cultures.
    Rathore S; Salmerón I; Pandiella SS
    Food Microbiol; 2012 May; 30(1):239-44. PubMed ID: 22265307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of maturity at harvest for whole-crop barley and oat on dry matter intake, sorting, and digestibility when fed to beef cattle.
    Rosser CL; Beattie AD; Block HC; McKinnon JJ; Lardner HA; Górka P; Penner GB
    J Anim Sci; 2016 Feb; 94(2):697-708. PubMed ID: 27065140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.