BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 22676971)

  • 1. Hierarchical twin-scale inverse opal TiO2 electrodes for dye-sensitized solar cells.
    Cho CY; Moon JH
    Langmuir; 2012 Jun; 28(25):9372-7. PubMed ID: 22676971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bilayer inverse opal TiO2 electrodes for dye-sensitized solar cells via post-treatment.
    Shin JH; Moon JH
    Langmuir; 2011 May; 27(10):6311-5. PubMed ID: 21488619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis of TiO2 inverse opal electrodes for dye-sensitized solar cells.
    Shin JH; Kang JH; Jin WM; Park JH; Cho YS; Moon JH
    Langmuir; 2011 Jan; 27(2):856-60. PubMed ID: 21155579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monolithic multiscale bilayer inverse opal electrodes for dye-sensitized solar cell applications.
    Lee JW; Moon JH
    Nanoscale; 2015 Mar; 7(12):5164-8. PubMed ID: 25634556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bottom-up growth of hierarchical electrodes for highly efficient dye-sensitized solar cells.
    Lee Y; Cho CY; Ha SJ; Kim HN; Moon JH
    ACS Appl Mater Interfaces; 2012 Jul; 4(7):3589-95. PubMed ID: 22738020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene-embedded 3D TiO2 inverse opal electrodes for highly efficient dye-sensitized solar cells: morphological characteristics and photocurrent enhancement.
    Kim HN; Yoo H; Moon JH
    Nanoscale; 2013 May; 5(10):4200-4. PubMed ID: 23536037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inverse opal carbons for counter electrode of dye-sensitized solar cells.
    Kang DY; Lee Y; Cho CY; Moon JH
    Langmuir; 2012 May; 28(17):7033-8. PubMed ID: 22475456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of a multi-scale nanostructure of TiO(2) for application in dye-sensitized solar cells.
    Kuo CY; Lu SY
    Nanotechnology; 2008 Mar; 19(9):095705. PubMed ID: 21817687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of charge transport properties of a 3D electrode for dye-sensitized solar cells.
    Cho CY; Kim HN; Moon JH
    Phys Chem Chem Phys; 2013 Jul; 15(26):10835-40. PubMed ID: 23698158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1D nanorod-planted 3D inverse opal structures for use in dye-sensitized solar cells.
    Park Y; Lee JW; Ha SJ; Moon JH
    Nanoscale; 2014 Mar; 6(6):3105-9. PubMed ID: 24356878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile fabrication of sub-100 nm mesoscale inverse opal films and their application in dye-sensitized solar cell electrodes.
    Lee JW; Lee J; Kim C; Cho CY; Moon JH
    Sci Rep; 2014 Oct; 4():6804. PubMed ID: 25348114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced photovoltaic properties of Nb₂O₅-coated TiO₂ 3D ordered porous electrodes in dye-sensitized solar cells.
    Kim HN; Moon JH
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):5821-5. PubMed ID: 23153118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Method to protect charge recombination in the back-contact dye-sensitized solar cell.
    Yoo B; Kim KJ; Lee DK; Kim K; Ko MJ; Kim YH; Kim WM; Park NG
    Opt Express; 2010 Sep; 18 Suppl 3():A395-402. PubMed ID: 21165069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of TiO₂ nanowires/nanotubes using polycarbonate membranes and their uses in dye-sensitized solar cells.
    Roh DK; Patel R; Ahn SH; Kim DJ; Kim JH
    Nanoscale; 2011 Oct; 3(10):4162-9. PubMed ID: 21894346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interface Passivation Effects on the Photovoltaic Performance of Quantum Dot Sensitized Inverse Opal TiO₂ Solar Cells.
    Hori K; Zhang Y; Tusamalee P; Nakazawa N; Yoshihara Y; Wang R; Toyoda T; Hayase S; Shen Q
    Nanomaterials (Basel); 2018 Jun; 8(7):. PubMed ID: 29941828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of interpenetrating hierarchical titania structures by confined synthesis in inverse opal.
    Mandlmeier B; Szeifert JM; Fattakhova-Rohlfing D; Amenitsch H; Bein T
    J Am Chem Soc; 2011 Nov; 133(43):17274-82. PubMed ID: 21888389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Holographically defined TiO2 electrodes for dye-sensitized solar cells.
    Jin WM; Shin JH; Cho CY; Kang JH; Park JH; Moon JH
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):2970-3. PubMed ID: 20979378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrothermal fabrication of hierarchically macroporous Zn2SnO4 for highly efficient dye-sensitized solar cells.
    Wang YF; Li KN; Xu YF; Rao HS; Su CY; Kuang DB
    Nanoscale; 2013 Jul; 5(13):5940-8. PubMed ID: 23703250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional photonic crystal fluorinated tin oxide (FTO) electrodes: synthesis and optical and electrical properties.
    Yang Z; Gao S; Li W; Vlasko-Vlasov V; Welp U; Kwok WK; Xu T
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1101-8. PubMed ID: 21395238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. General strategy for fabricating transparent TiO2 nanotube arrays for dye-sensitized photoelectrodes: illumination geometry and transport properties.
    Kim JY; Noh JH; Zhu K; Halverson AF; Neale NR; Park S; Hong KS; Frank AJ
    ACS Nano; 2011 Apr; 5(4):2647-56. PubMed ID: 21395234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.