These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 22677338)

  • 1. The effects of gait strategy on metabolic rate and indicators of stability during downhill walking.
    Monsch ED; Franz CO; Dean JC
    J Biomech; 2012 Jul; 45(11):1928-33. PubMed ID: 22677338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cost of walking downhill: is the preferred gait energetically optimal?
    Hunter LC; Hendrix EC; Dean JC
    J Biomech; 2010 Jul; 43(10):1910-5. PubMed ID: 20399434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of stride frequency on metabolic costs and rating of perceived exertion during walking in water.
    Masumoto K; Nishizaki Y; Hamada A
    Gait Posture; 2013 Jun; 38(2):335-9. PubMed ID: 23332190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A quantitative gait assessment method based on energy exchange analysis during walking: a normal gait study.
    Gider F; Matjacić Z; Bajd T
    J Med Eng Technol; 2005; 29(2):90-4. PubMed ID: 15804858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speeding up or slowing down?: Gait adaptations to preserve gait stability in response to balance perturbations.
    Hak L; Houdijk H; Steenbrink F; Mert A; van der Wurff P; Beek PJ; van Dieën JH
    Gait Posture; 2012 Jun; 36(2):260-4. PubMed ID: 22464635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences between local and orbital dynamic stability during human walking.
    Dingwell JB; Kang HG
    J Biomech Eng; 2007 Aug; 129(4):586-93. PubMed ID: 17655480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of lateral stabilization on walking in young and old adults.
    Dean JC; Alexander NB; Kuo AD
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):1919-26. PubMed ID: 18018687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear analysis of gait kinematics to track changes in oxygen consumption in prolonged load carriage walking: a pilot study.
    Schiffman JM; Chelidze D; Adams A; Segala DB; Hasselquist L
    J Biomech; 2009 Sep; 42(13):2196-9. PubMed ID: 19647830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The metabolic cost of walking on gradients with a waddling gait.
    Nudds RL; Codd JR
    J Exp Biol; 2012 Aug; 215(Pt 15):2579-85. PubMed ID: 22786634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of trunk variability and stability measures to balance impairments induced by galvanic vestibular stimulation during gait.
    van Schooten KS; Sloot LH; Bruijn SM; Kingma H; Meijer OG; Pijnappels M; van Dieën JH
    Gait Posture; 2011 Apr; 33(4):656-60. PubMed ID: 21435878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gait variability among healthy adults: low and high stride-to-stride variability are both a reflection of gait stability.
    Beauchet O; Allali G; Annweiler C; Bridenbaugh S; Assal F; Kressig RW; Herrmann FR
    Gerontology; 2009; 55(6):702-6. PubMed ID: 19713694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-related differences in spatiotemporal markers of gait stability during dual task walking.
    Hollman JH; Kovash FM; Kubik JJ; Linbo RA
    Gait Posture; 2007 Jun; 26(1):113-9. PubMed ID: 16959488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical energy in toddler gait. A trade-off between economy and stability?
    Hallemans A; Aerts P; Otten B; De Deyn PP; De Clercq D
    J Exp Biol; 2004 Jun; 207(Pt 14):2417-31. PubMed ID: 15184514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preferred and energetically optimal gait transition speeds in human locomotion.
    Hreljac A
    Med Sci Sports Exerc; 1993 Oct; 25(10):1158-62. PubMed ID: 8231761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mind your step: metabolic energy cost while walking an enforced gait pattern.
    Wezenberg D; de Haan A; van Bennekom CA; Houdijk H
    Gait Posture; 2011 Apr; 33(4):544-9. PubMed ID: 21330135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why is walker-assisted gait metabolically expensive?
    Priebe JR; Kram R
    Gait Posture; 2011 Jun; 34(2):265-9. PubMed ID: 21665475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does stride length influence metabolic cost and biomechanical risk factors for knee osteoarthritis in obese women?
    Russell EM; Braun B; Hamill J
    Clin Biomech (Bristol, Avon); 2010 Jun; 25(5):438-43. PubMed ID: 20199829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constrained optimization in human walking: cost minimization and gait plasticity.
    Bertram JE
    J Exp Biol; 2005 Mar; 208(Pt 6):979-91. PubMed ID: 15767300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The energy cost for the step-to-step transition in amputee walking.
    Houdijk H; Pollmann E; Groenewold M; Wiggerts H; Polomski W
    Gait Posture; 2009 Jul; 30(1):35-40. PubMed ID: 19321343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separating the effects of age and walking speed on gait variability.
    Kang HG; Dingwell JB
    Gait Posture; 2008 May; 27(4):572-7. PubMed ID: 17768055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.