These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22677382)

  • 1. A Bayesian inference scheme to extract diffusivity and potential fields from confined single-molecule trajectories.
    Türkcan S; Alexandrou A; Masson JB
    Biophys J; 2012 May; 102(10):2288-98. PubMed ID: 22677382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian decision tree for the classification of the mode of motion in single-molecule trajectories.
    Türkcan S; Masson JB
    PLoS One; 2013; 8(12):e82799. PubMed ID: 24376584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observing the confinement potential of bacterial pore-forming toxin receptors inside rafts with nonblinking Eu(3+)-doped oxide nanoparticles.
    Türkcan S; Masson JB; Casanova D; Mialon G; Gacoin T; Boilot JP; Popoff MR; Alexandrou A
    Biophys J; 2012 May; 102(10):2299-308. PubMed ID: 22677383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying biomolecule diffusivity using an optimal Bayesian method.
    Voisinne G; Alexandrou A; Masson JB
    Biophys J; 2010 Feb; 98(4):596-605. PubMed ID: 20159156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian Uncertainty Quantification for Bond Energies and Mobilities Using Path Integral Analysis.
    Chang JC; Fok PW; Chou T
    Biophys J; 2015 Sep; 109(5):966-74. PubMed ID: 26331254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motion blur filtering: A statistical approach for extracting confinement forces and diffusivity from a single blurred trajectory.
    Calderon CP
    Phys Rev E; 2016 May; 93(5):053303. PubMed ID: 27301001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing membrane protein interactions with their lipid raft environment using single-molecule tracking and Bayesian inference analysis.
    Türkcan S; Richly MU; Alexandrou A; Masson JB
    PLoS One; 2013; 8(1):e53073. PubMed ID: 23301023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring maps of forces inside cell membrane microdomains.
    Masson JB; Casanova D; Türkcan S; Voisinne G; Popoff MR; Vergassola M; Alexandrou A
    Phys Rev Lett; 2009 Jan; 102(4):048103. PubMed ID: 19257479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Communication: A multiscale Bayesian inference approach to analyzing subdiffusion in particle trajectories.
    Hinsen K; Kneller GR
    J Chem Phys; 2016 Oct; 145(15):151101. PubMed ID: 27782457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A combined quasi-continuum/Langevin equation approach to study the self-diffusion dynamics of confined fluids.
    Sanghi T; Aluru NR
    J Chem Phys; 2013 Mar; 138(12):124109. PubMed ID: 23556711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expectation-maximization of the potential of mean force and diffusion coefficient in Langevin dynamics from single molecule FRET data photon by photon.
    Haas KR; Yang H; Chu JW
    J Phys Chem B; 2013 Dec; 117(49):15591-605. PubMed ID: 23937300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical Tests for Force Inference in Heterogeneous Environments.
    Serov AS; Laurent F; Floderer C; Perronet K; Favard C; Muriaux D; Westbrook N; Vestergaard CL; Masson JB
    Sci Rep; 2020 Mar; 10(1):3783. PubMed ID: 32123194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Jump-Distance-Based Parameter Inference Scheme for Particulate Trajectories.
    Menssen R; Mani M
    Biophys J; 2019 Jul; 117(1):143-156. PubMed ID: 31235182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulations of confined Brownian-yet-non-Gaussian motion.
    Millan E; Lavaud M; Amarouchene Y; Salez T
    Eur Phys J E Soft Matter; 2023 Mar; 46(4):24. PubMed ID: 37002415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian inference in the scaling analysis of critical phenomena.
    Harada K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056704. PubMed ID: 22181544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian inference for improved single molecule fluorescence tracking.
    Yoon JW; Bruckbauer A; Fitzgerald WJ; Klenerman D
    Biophys J; 2008 Jun; 94(12):4932-47. PubMed ID: 18339757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian approach to MSD-based analysis of particle motion in live cells.
    Monnier N; Guo SM; Mori M; He J; Lénárt P; Bathe M
    Biophys J; 2012 Aug; 103(3):616-626. PubMed ID: 22947879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calibrating optical tweezers with Bayesian inference.
    Richly MU; Türkcan S; Le Gall A; Fiszman N; Masson JB; Westbrook N; Perronet K; Alexandrou A
    Opt Express; 2013 Dec; 21(25):31578-90. PubMed ID: 24514731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SMAUG: Analyzing single-molecule tracks with nonparametric Bayesian statistics.
    Karslake JD; Donarski ED; Shelby SA; Demey LM; DiRita VJ; Veatch SL; Biteen JS
    Methods; 2021 Sep; 193():16-26. PubMed ID: 32247784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confined mobility in biomembranes modeled by early stage Brownian motion.
    Gmachowski L
    Math Biosci; 2014 Aug; 254():1-5. PubMed ID: 24909813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.