BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 22678075)

  • 1. Supercapacitors based on high-quality graphene scrolls.
    Zeng F; Kuang Y; Liu G; Liu R; Huang Z; Fu C; Zhou H
    Nanoscale; 2012 Jul; 4(13):3997-4001. PubMed ID: 22678075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors.
    Wang G; Sun X; Lu F; Sun H; Yu M; Jiang W; Liu C; Lian J
    Small; 2012 Feb; 8(3):452-9. PubMed ID: 22162371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials.
    Wang H; Casalongue HS; Liang Y; Dai H
    J Am Chem Soc; 2010 Jun; 132(21):7472-7. PubMed ID: 20443559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water-soluble graphene grafted by poly(sodium 4-styrenesulfonate) for enhancement of electric capacitance.
    Du FP; Wang JJ; Tang CY; Tsui CP; Zhou XP; Xie XL; Liao YG
    Nanotechnology; 2012 Nov; 23(47):475704. PubMed ID: 23103878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition metal oxide and graphene nanocomposites for high-performance electrochemical capacitors.
    Zhang W; Liu F; Li Q; Shou Q; Cheng J; Zhang L; Nelson BJ; Zhang X
    Phys Chem Chem Phys; 2012 Dec; 14(47):16331-7. PubMed ID: 23132379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ electrochemical polymerization of a nanorod-PANI-Graphene composite in a reverse micelle electrolyte and its application in a supercapacitor.
    Hu L; Tu J; Jiao S; Hou J; Zhu H; Fray DJ
    Phys Chem Chem Phys; 2012 Dec; 14(45):15652-6. PubMed ID: 23076399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of layered graphene and tungsten oxide hybrids for enhanced performance supercapacitors.
    Xing LL; Huang KJ; Fang LX
    Dalton Trans; 2016 Nov; 45(43):17439-17446. PubMed ID: 27735015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supercapacitors based on self-assembled graphene organogel.
    Sun Y; Wu Q; Shi G
    Phys Chem Chem Phys; 2011 Oct; 13(38):17249-54. PubMed ID: 21879072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior.
    Yan J; Khoo E; Sumboja A; Lee PS
    ACS Nano; 2010 Jul; 4(7):4247-55. PubMed ID: 20593844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of high-quality graphene oxide nanoscrolls and application in supercapacitor.
    Fan T; Zeng W; Niu Q; Tong S; Cai K; Liu Y; Huang W; Min Y; Epstein AJ
    Nanoscale Res Lett; 2015; 10():192. PubMed ID: 25977663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanowire templated semihollow bicontinuous graphene scrolls: designed construction, mechanism, and enhanced energy storage performance.
    Yan M; Wang F; Han C; Ma X; Xu X; An Q; Xu L; Niu C; Zhao Y; Tian X; Hu P; Wu H; Mai L
    J Am Chem Soc; 2013 Dec; 135(48):18176-82. PubMed ID: 24219156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical and Capacitive Properties of Carbon Dots/Reduced Graphene Oxide Supercapacitors.
    Dang YQ; Ren SZ; Liu G; Cai J; Zhang Y; Qiu J
    Nanomaterials (Basel); 2016 Nov; 6(11):. PubMed ID: 28335339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercapacitors based on graphene-supported iron nanosheets as negative electrode materials.
    Long C; Wei T; Yan J; Jiang L; Fan Z
    ACS Nano; 2013 Dec; 7(12):11325-32. PubMed ID: 24245580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cutting and unzipping multiwalled carbon nanotubes into curved graphene nanosheets and their enhanced supercapacitor performance.
    Wang H; Wang Y; Hu Z; Wang X
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6827-34. PubMed ID: 23148646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitors.
    Wang D; Wang Q; Wang T
    Inorg Chem; 2011 Jul; 50(14):6482-92. PubMed ID: 21671652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanofibers with radially grown graphene sheets derived from electrospinning for aqueous supercapacitors with high working voltage and energy density.
    Zhao L; Qiu Y; Yu J; Deng X; Dai C; Bai X
    Nanoscale; 2013 Jun; 5(11):4902-9. PubMed ID: 23624805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Needle-like Co3O4 anchored on the graphene with enhanced electrochemical performance for aqueous supercapacitors.
    Guan Q; Cheng J; Wang B; Ni W; Gu G; Li X; Huang L; Yang G; Nie F
    ACS Appl Mater Interfaces; 2014 May; 6(10):7626-32. PubMed ID: 24716615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manganese hexacyanoferrate derived Mn3O4 nanocubes-reduced graphene oxide nanocomposites and their charge storage characteristics in supercapacitors.
    Subramani K; Jeyakumar D; Sathish M
    Phys Chem Chem Phys; 2014 Mar; 16(10):4952-61. PubMed ID: 24477791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 7,7,8,8-Tetracyanoquinodimethane-assisted one-step electrochemical exfoliation of graphite and its performance as an electrode material.
    Khanra P; Lee CN; Kuila T; Kim NH; Park MJ; Lee JH
    Nanoscale; 2014 May; 6(9):4864-73. PubMed ID: 24668420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile fabrication of NH4CoPO4·H2O nano/microstructures and their primarily application as electrochemical supercapacitor.
    Pang H; Yan Z; Wang W; Chen J; Zhang J; Zheng H
    Nanoscale; 2012 Sep; 4(19):5946-53. PubMed ID: 22833216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.