BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 22678215)

  • 1. Influence of groundwater composition on subsurface iron and arsenic removal.
    Moed DH; van Halem D; Verberk JQ; Amy GL; van Dijk JC
    Water Sci Technol; 2012; 66(1):173-8. PubMed ID: 22678215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subsurface iron and arsenic removal for shallow tube well drinking water supply in rural Bangladesh.
    van Halem D; Olivero S; de Vet WW; Verberk JQ; Amy GL; van Dijk JC
    Water Res; 2010 Nov; 44(19):5761-9. PubMed ID: 20573366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of As, Mn and Fe fixation inside the aquifer during groundwater exploitation in the experimental system imitated natural conditions.
    Dung NT; Con TH; Cam BD; Kang Y
    Environ Geochem Health; 2012 Jun; 34(3):349-54. PubMed ID: 21826513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study.
    Xie X; Wang Y; Pi K; Liu C; Li J; Liu Y; Wang Z; Duan M
    Sci Total Environ; 2015 Sep; 527-528():38-46. PubMed ID: 25956146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenate removal by zero valent iron: batch and column tests.
    Biterna M; Arditsoglou A; Tsikouras E; Voutsa D
    J Hazard Mater; 2007 Nov; 149(3):548-52. PubMed ID: 17689184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and evaluation of iron-chitosan composites for removal of As(III) and As(V) from arsenic contaminated real life groundwater.
    Gupta A; Chauhan VS; Sankararamakrishnan N
    Water Res; 2009 Aug; 43(15):3862-70. PubMed ID: 19577786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Desorption of arsenic from clay and humic acid-coated clay by dissolved phosphate and silicate.
    Sharma P; Kappler A
    J Contam Hydrol; 2011 Nov; 126(3-4):216-25. PubMed ID: 22115087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cation exchange during subsurface iron removal.
    van Halem D; Moed DH; Verberk JQ; Amy GL; van Dijk JC
    Water Res; 2012 Feb; 46(2):307-15. PubMed ID: 22137449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Fe(II), phosphate, silicate, sulfate, and carbonate in arsenic uptake by coprecipitation in synthetic and natural groundwater.
    Ciardelli MC; Xu H; Sahai N
    Water Res; 2008 Feb; 42(3):615-24. PubMed ID: 17919678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Background species effect on aqueous arsenic removal by nano zero-valent iron using fractional factorial design.
    Tanboonchuy V; Grisdanurak N; Liao CH
    J Hazard Mater; 2012 Feb; 205-206():40-6. PubMed ID: 22245511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption and removal of arsenic from water by iron ore mining waste.
    Nguyen TV; Nguyen TV; Pham TL; Vigneswaran S; Ngo HH; Kandasamy J; Nguyen HK; Nguyen DT
    Water Sci Technol; 2009; 60(9):2301-8. PubMed ID: 19901461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron.
    Leupin OX; Hug SJ
    Water Res; 2005 May; 39(9):1729-40. PubMed ID: 15899271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comment on "effect of groundwater iron and phosphate on the efficacy of arsenic removal by iron-amended biosand filters".
    Noubactep C
    Environ Sci Technol; 2009 Nov; 43(22):8698; author reply 8696-7. PubMed ID: 20028074
    [No Abstract]   [Full Text] [Related]  

  • 14. Removal of As(III) in a column reactor packed with iron-coated sand and manganese-coated sand.
    Chang YY; Song KH; Yang JK
    J Hazard Mater; 2008 Feb; 150(3):565-72. PubMed ID: 17570581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subsurface iron and arsenic removal: low-cost technology for community-based water supply in Bangladesh.
    van Halem D; Heijman SG; Johnston R; Huq IM; Ghosh SK; Verberk JQ; Amy GL; van Dijk JC
    Water Sci Technol; 2010; 62(11):2702-9. PubMed ID: 21099059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron-based subsurface arsenic removal technologies by aeration: A review of the current state and future prospects.
    Luong VT; Cañas Kurz EE; Hellriegel U; Luu TL; Hoinkis J; Bundschuh J
    Water Res; 2018 Apr; 133():110-122. PubMed ID: 29367047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of humic acid on arsenic(V) removal by zero-valent iron from groundwater with special references to corrosion products analyses.
    Rao P; Mak MS; Liu T; Lai KC; Lo IM
    Chemosphere; 2009 Apr; 75(2):156-62. PubMed ID: 19157491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ remediation of arsenic in simulated groundwater using zerovalent iron: laboratory column tests on combined effects of phosphate and silicate.
    Su C; Puls RW
    Environ Sci Technol; 2003 Jun; 37(11):2582-7. PubMed ID: 12831047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrate and ammonium ions removal from groundwater by a hybrid system of zero-valent iron combined with adsorbents.
    Ji MK; Park WB; Khan MA; Abou-Shanab RA; Kim Y; Cho Y; Choi J; Song H; Jeon BH
    J Environ Monit; 2012 Apr; 14(4):1153-8. PubMed ID: 22344042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment of groundwater polluted by arsenic compounds by zero valent iron.
    Sun H; Wang L; Zhang R; Sui J; Xu G
    J Hazard Mater; 2006 Feb; 129(1-3):297-303. PubMed ID: 16194593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.