BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 22678822)

  • 1. Investigating the mechanism of hysteresis effect in graphene electrical field device fabricated on SiO₂ substrates using Raman spectroscopy.
    Xu H; Chen Y; Zhang J; Zhang H
    Small; 2012 Sep; 8(18):2833-40. PubMed ID: 22678822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate engineering by hexagonal boron nitride/SiO2 for hysteresis-free graphene FETs and large-scale graphene p-n junctions.
    Xu H; Wu J; Chen Y; Zhang H; Zhang J
    Chem Asian J; 2013 Oct; 8(10):2446-52. PubMed ID: 23840025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulating the charge-transfer enhancement in GERS using an electrical field under vacuum and an n/p-doping atmosphere.
    Xu H; Chen Y; Xu W; Zhang H; Kong J; Dresselhaus MS; Zhang J
    Small; 2011 Oct; 7(20):2945-52. PubMed ID: 21901822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsic doping and gate hysteresis in graphene field effect devices fabricated on SiO2 substrates.
    Joshi P; Romero HE; Neal AT; Toutam VK; Tadigadapa SA
    J Phys Condens Matter; 2010 Aug; 22(33):334214. PubMed ID: 21386504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible, low-voltage, and low-hysteresis PbSe nanowire field-effect transistors.
    Kim DK; Lai Y; Vemulkar TR; Kagan CR
    ACS Nano; 2011 Dec; 5(12):10074-83. PubMed ID: 22084980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hysteresis reversion in graphene field-effect transistors.
    Liao ZM; Han BH; Zhou YB; Yu DP
    J Chem Phys; 2010 Jul; 133(4):044703. PubMed ID: 20687672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding surfactant/graphene interactions using a graphene field effect transistor: relating molecular structure to hysteresis and carrier mobility.
    Shih CJ; Paulus GL; Wang QH; Jin Z; Blankschtein D; Strano MS
    Langmuir; 2012 Jun; 28(22):8579-86. PubMed ID: 22587527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hysteresis of electronic transport in graphene transistors.
    Wang H; Wu Y; Cong C; Shang J; Yu T
    ACS Nano; 2010 Dec; 4(12):7221-8. PubMed ID: 21047068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of graphene/SiO2 interface by UV-irradiation: effect on electrical characteristics.
    Imamura G; Saiki K
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2439-43. PubMed ID: 25569142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor.
    Das A; Pisana S; Chakraborty B; Piscanec S; Saha SK; Waghmare UV; Novoselov KS; Krishnamurthy HR; Geim AK; Ferrari AC; Sood AK
    Nat Nanotechnol; 2008 Apr; 3(4):210-5. PubMed ID: 18654505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate-induced solvent intercalation for stable graphene doping.
    Kim HH; Yang JW; Jo SB; Kang B; Lee SK; Bong H; Lee G; Kim KS; Cho K
    ACS Nano; 2013 Feb; 7(2):1155-62. PubMed ID: 23368414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing extrinsic performance-limiting factors in graphene grown by chemical vapor deposition.
    Chan J; Venugopal A; Pirkle A; McDonnell S; Hinojos D; Magnuson CW; Ruoff RS; Colombo L; Wallace RM; Vogel EM
    ACS Nano; 2012 Apr; 6(4):3224-9. PubMed ID: 22390298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing charge transfer at surfaces using graphene transistors.
    Levesque PL; Sabri SS; Aguirre CM; Guillemette J; Siaj M; Desjardins P; Szkopek T; Martel R
    Nano Lett; 2011 Jan; 11(1):132-7. PubMed ID: 21141990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution-processable organic dielectrics for graphene electronics.
    Mattevi C; Colléaux F; Kim H; Lin YH; Park KT; Chhowalla M; Anthopoulos TD
    Nanotechnology; 2012 Aug; 23(34):344017. PubMed ID: 22885685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning the doping type and level of graphene with different gold configurations.
    Wu Y; Jiang W; Ren Y; Cai W; Lee WH; Li H; Piner RD; Pope CW; Hao Y; Ji H; Kang J; Ruoff RS
    Small; 2012 Oct; 8(20):3129-36. PubMed ID: 22826024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable graphene doping by modulating the nanopore geometry on a SiO
    Lim N; Yoo TJ; Kim JT; Pak Y; Kumaresan Y; Kim H; Kim W; Lee BH; Jung GY
    RSC Adv; 2018 Feb; 8(17):9031-9037. PubMed ID: 35541886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Negligible environmental sensitivity of graphene in a hexagonal boron nitride/graphene/h-BN sandwich structure.
    Wang L; Chen Z; Dean CR; Taniguchi T; Watanabe K; Brus LE; Hone J
    ACS Nano; 2012 Oct; 6(10):9314-9. PubMed ID: 23009029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. n-Type behavior of graphene supported on Si/SiO(2) substrates.
    Romero HE; Shen N; Joshi P; Gutierrez HR; Tadigadapa SA; Sofo JO; Eklund PC
    ACS Nano; 2008 Oct; 2(10):2037-44. PubMed ID: 19206449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Top-gated graphene field-effect transistors with high normalized transconductance and designable dirac point voltage.
    Xu H; Zhang Z; Xu H; Wang Z; Wang S; Peng LM
    ACS Nano; 2011 Jun; 5(6):5031-7. PubMed ID: 21528892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile preparation of nitrogen-doped few-layer graphene via supercritical reaction.
    Qian W; Cui X; Hao R; Hou Y; Zhang Z
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2259-64. PubMed ID: 21644571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.