These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 22678822)
1. Investigating the mechanism of hysteresis effect in graphene electrical field device fabricated on SiO₂ substrates using Raman spectroscopy. Xu H; Chen Y; Zhang J; Zhang H Small; 2012 Sep; 8(18):2833-40. PubMed ID: 22678822 [TBL] [Abstract][Full Text] [Related]
2. Substrate engineering by hexagonal boron nitride/SiO2 for hysteresis-free graphene FETs and large-scale graphene p-n junctions. Xu H; Wu J; Chen Y; Zhang H; Zhang J Chem Asian J; 2013 Oct; 8(10):2446-52. PubMed ID: 23840025 [TBL] [Abstract][Full Text] [Related]
3. Modulating the charge-transfer enhancement in GERS using an electrical field under vacuum and an n/p-doping atmosphere. Xu H; Chen Y; Xu W; Zhang H; Kong J; Dresselhaus MS; Zhang J Small; 2011 Oct; 7(20):2945-52. PubMed ID: 21901822 [TBL] [Abstract][Full Text] [Related]
4. Intrinsic doping and gate hysteresis in graphene field effect devices fabricated on SiO2 substrates. Joshi P; Romero HE; Neal AT; Toutam VK; Tadigadapa SA J Phys Condens Matter; 2010 Aug; 22(33):334214. PubMed ID: 21386504 [TBL] [Abstract][Full Text] [Related]
5. Flexible, low-voltage, and low-hysteresis PbSe nanowire field-effect transistors. Kim DK; Lai Y; Vemulkar TR; Kagan CR ACS Nano; 2011 Dec; 5(12):10074-83. PubMed ID: 22084980 [TBL] [Abstract][Full Text] [Related]
7. Understanding surfactant/graphene interactions using a graphene field effect transistor: relating molecular structure to hysteresis and carrier mobility. Shih CJ; Paulus GL; Wang QH; Jin Z; Blankschtein D; Strano MS Langmuir; 2012 Jun; 28(22):8579-86. PubMed ID: 22587527 [TBL] [Abstract][Full Text] [Related]
8. Hysteresis of electronic transport in graphene transistors. Wang H; Wu Y; Cong C; Shang J; Yu T ACS Nano; 2010 Dec; 4(12):7221-8. PubMed ID: 21047068 [TBL] [Abstract][Full Text] [Related]
9. Modification of graphene/SiO2 interface by UV-irradiation: effect on electrical characteristics. Imamura G; Saiki K ACS Appl Mater Interfaces; 2015 Feb; 7(4):2439-43. PubMed ID: 25569142 [TBL] [Abstract][Full Text] [Related]
10. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Das A; Pisana S; Chakraborty B; Piscanec S; Saha SK; Waghmare UV; Novoselov KS; Krishnamurthy HR; Geim AK; Ferrari AC; Sood AK Nat Nanotechnol; 2008 Apr; 3(4):210-5. PubMed ID: 18654505 [TBL] [Abstract][Full Text] [Related]
11. Substrate-induced solvent intercalation for stable graphene doping. Kim HH; Yang JW; Jo SB; Kang B; Lee SK; Bong H; Lee G; Kim KS; Cho K ACS Nano; 2013 Feb; 7(2):1155-62. PubMed ID: 23368414 [TBL] [Abstract][Full Text] [Related]
13. Probing charge transfer at surfaces using graphene transistors. Levesque PL; Sabri SS; Aguirre CM; Guillemette J; Siaj M; Desjardins P; Szkopek T; Martel R Nano Lett; 2011 Jan; 11(1):132-7. PubMed ID: 21141990 [TBL] [Abstract][Full Text] [Related]
14. Solution-processable organic dielectrics for graphene electronics. Mattevi C; Colléaux F; Kim H; Lin YH; Park KT; Chhowalla M; Anthopoulos TD Nanotechnology; 2012 Aug; 23(34):344017. PubMed ID: 22885685 [TBL] [Abstract][Full Text] [Related]
15. Tuning the doping type and level of graphene with different gold configurations. Wu Y; Jiang W; Ren Y; Cai W; Lee WH; Li H; Piner RD; Pope CW; Hao Y; Ji H; Kang J; Ruoff RS Small; 2012 Oct; 8(20):3129-36. PubMed ID: 22826024 [TBL] [Abstract][Full Text] [Related]
16. Negligible environmental sensitivity of graphene in a hexagonal boron nitride/graphene/h-BN sandwich structure. Wang L; Chen Z; Dean CR; Taniguchi T; Watanabe K; Brus LE; Hone J ACS Nano; 2012 Oct; 6(10):9314-9. PubMed ID: 23009029 [TBL] [Abstract][Full Text] [Related]