BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 22678822)

  • 21. Highly tunable charge transport in layer-by-layer assembled graphene transistors.
    Hwang H; Joo P; Kang MS; Ahn G; Han JT; Kim BS; Cho JH
    ACS Nano; 2012 Mar; 6(3):2432-40. PubMed ID: 22314208
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulation of the thermodynamic, kinetic, and magnetic properties of the hydrogen monomer on graphene by charge doping.
    Huang LF; Ni MY; Zhang GR; Zhou WH; Li YG; Zheng XH; Zeng Z
    J Chem Phys; 2011 Aug; 135(6):064705. PubMed ID: 21842947
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photoinduced Hysteresis of Graphene Field-Effect Transistors Due to Hydrogen-Complexed Defects in Silicon Dioxide.
    Cao G; Liu X; Zhang Y; Liu W; Deng M; Chen G; Zhang G; Li Q; Beka LG; Li X; Wang X
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):12170-12178. PubMed ID: 30843687
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Raman fingerprint of doping due to metal adsorbates on graphene.
    Iqbal MW; Singh AK; Iqbal MZ; Eom J
    J Phys Condens Matter; 2012 Aug; 24(33):335301. PubMed ID: 22814217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of graphene Fermi level on the Raman scattering intensity of molecules on graphene.
    Xu H; Xie L; Zhang H; Zhang J
    ACS Nano; 2011 Jul; 5(7):5338-44. PubMed ID: 21678950
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A facile route to recover intrinsic graphene over large scale.
    Shin DW; Lee HM; Yu SM; Lim KS; Jung JH; Kim MK; Kim SW; Han JH; Ruoff RS; Yoo JB
    ACS Nano; 2012 Sep; 6(9):7781-8. PubMed ID: 22928753
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photocontrolled molecular structural transition and doping in graphene.
    Peimyoo N; Li J; Shang J; Shen X; Qiu C; Xie L; Huang W; Yu T
    ACS Nano; 2012 Oct; 6(10):8878-86. PubMed ID: 22966836
    [TBL] [Abstract][Full Text] [Related]  

  • 28. n-Type reduced graphene oxide field-effect transistors (FETs) from photoactive metal oxides.
    Yoo H; Kim Y; Lee J; Lee H; Yoon Y; Kim G; Lee H
    Chemistry; 2012 Apr; 18(16):4923-9. PubMed ID: 22422712
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inverse transfer method using polymers with various functional groups for controllable graphene doping.
    Lee SK; Yang JW; Kim HH; Jo SB; Kang B; Bong H; Lee HC; Lee G; Kim KS; Cho K
    ACS Nano; 2014 Aug; 8(8):7968-75. PubMed ID: 25050634
    [TBL] [Abstract][Full Text] [Related]  

  • 30. N-doped graphene field-effect transistors with enhanced electron mobility and air-stability.
    Xu W; Lim TS; Seo HK; Min SY; Cho H; Park MH; Kim YH; Lee TW
    Small; 2014 May; 10(10):1999-2005. PubMed ID: 24616289
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On-demand doping of graphene by stamping with a chemically functionalized rubber lens.
    Choi Y; Sun Q; Hwang E; Lee Y; Lee S; Cho JH
    ACS Nano; 2015 Apr; 9(4):4354-61. PubMed ID: 25817481
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controlled Doping in Graphene Monolayers by Trapping Organic Molecules at the Graphene-Substrate Interface.
    Srivastava PK; Yadav P; Rani V; Ghosh S
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5375-5381. PubMed ID: 28094503
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultraviolet irradiation-controlled memory effect in graphene field-effect transistors.
    Meng J; Wu HC; Chen JJ; Lin F; Bie YQ; Shvets IV; Yu DP; Liao ZM
    Small; 2013 Jul; 9(13):2240-4. PubMed ID: 23401376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The intrinsic origin of hysteresis in MoS2 field effect transistors.
    Shu J; Wu G; Guo Y; Liu B; Wei X; Chen Q
    Nanoscale; 2016 Feb; 8(5):3049-56. PubMed ID: 26782750
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temperature and gate voltage dependent Raman spectra of single-layer graphene.
    Nguyen KT; Abdula D; Tsai CL; Shim M
    ACS Nano; 2011 Jun; 5(6):5273-9. PubMed ID: 21591734
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transformation of the electrical characteristics of graphene field-effect transistors with fluoropolymer.
    Ha TJ; Lee J; Chowdhury SF; Akinwande D; Rossky PJ; Dodabalapur A
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):16-20. PubMed ID: 23252452
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Charge transfer and partial pinning at the contacts as the origin of a double dip in the transfer characteristics of graphene-based field-effect transistors.
    Di Bartolomeo A; Giubileo F; Santandrea S; Romeo F; Citro R; Schroeder T; Lupina G
    Nanotechnology; 2011 Jul; 22(27):275702. PubMed ID: 21597135
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct growth of bilayer graphene on SiO₂ substrates by carbon diffusion through nickel.
    Peng Z; Yan Z; Sun Z; Tour JM
    ACS Nano; 2011 Oct; 5(10):8241-7. PubMed ID: 21888426
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Field effect transistors and photodetectors based on nanocrystalline graphene derived from electron beam induced carbonaceous patterns.
    Kurra N; Bhadram VS; Narayana C; Kulkarni GU
    Nanotechnology; 2012 Oct; 23(42):425301. PubMed ID: 23036939
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The First-Water-Layer Evolution at the Graphene/Water Interface under Different Electro-Modulated Hydrophilic Conditions Observed by Suspended/Supported Field-Effect-Device Architectures.
    Tsai MH; Lu YX; Lin CY; Lin CH; Wang CC; Chu CM; Woon WY; Lin CT
    ACS Appl Mater Interfaces; 2023 Apr; 15(13):17019-17028. PubMed ID: 36947433
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.