BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

582 related articles for article (PubMed ID: 22678955)

  • 1. Control of interpenetration and gas-sorption properties of metal-organic frameworks by a simple change in ligand design.
    Prasad TK; Suh MP
    Chemistry; 2012 Jul; 18(28):8673-80. PubMed ID: 22678955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A highly porous metal-organic framework: structural transformations of a guest-free MOF depending on activation method and temperature.
    Park HJ; Lim DW; Yang WS; Oh TR; Suh MP
    Chemistry; 2011 Jun; 17(26):7251-60. PubMed ID: 21560171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High gas sorption and metal-ion exchange of microporous metal-organic frameworks with incorporated imide groups.
    Prasad TK; Hong DH; Suh MP
    Chemistry; 2010 Dec; 16(47):14043-50. PubMed ID: 20967910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of gas sorption properties of neutral and anionic metal-organic frameworks prepared from the same building blocks but in different solvent systems.
    Choi MH; Park HJ; Hong DH; Suh MP
    Chemistry; 2013 Dec; 19(51):17432-8. PubMed ID: 24318268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Post-synthetic reversible incorporation of organic linkers into porous metal-organic frameworks through single-crystal-to-single-crystal transformations and modification of gas-sorption properties.
    Park HJ; Cheon YE; Suh MP
    Chemistry; 2010 Oct; 16(38):11662-9. PubMed ID: 20827707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triple framework interpenetration and immobilization of open metal sites within a microporous mixed metal-organic framework for highly selective gas adsorption.
    Zhang Z; Xiang S; Hong K; Das MC; Arman HD; Garcia M; Mondal JU; Thomas KM; Chen B
    Inorg Chem; 2012 May; 51(9):4947-53. PubMed ID: 22524410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the topology and functionality of metal-organic frameworks by ligand design.
    Zhao D; Timmons DJ; Yuan D; Zhou HC
    Acc Chem Res; 2011 Feb; 44(2):123-33. PubMed ID: 21126015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of phase-pure interpenetrated MOF-5 and its gas sorption properties.
    Kim H; Das S; Kim MG; Dybtsev DN; Kim Y; Kim K
    Inorg Chem; 2011 Apr; 50(8):3691-6. PubMed ID: 21413727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stepwise and hysteretic sorption of N(2), O(2), CO(2), and H(2) gases in a porous metal-organic framework [Zn(2)(BPnDC)(2)(bpy)].
    Park HJ; Suh MP
    Chem Commun (Camb); 2010 Jan; 46(4):610-2. PubMed ID: 20062878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-atom ligand changes affect breathing in an extended metal-organic framework.
    Dau PV; Kim M; Garibay SJ; Münch FH; Moore CE; Cohen SM
    Inorg Chem; 2012 May; 51(10):5671-6. PubMed ID: 22545717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational Design and Synthesis of a Highly Porous Copper-Based Interpenetrated Metal-Organic Framework for High CO
    Bose P; Bai L; Ganguly R; Zou R; Zhao Y
    Chempluschem; 2015 Aug; 80(8):1259-1266. PubMed ID: 31973289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding Gas adsorption selectivity in IRMOF-8 using molecular simulation.
    Pillai RS; Pinto ML; Pires J; Jorge M; Gomes JR
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):624-37. PubMed ID: 25519048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interpenetration, porosity, and high-pressure gas adsorption in Zn4O(2,6-naphthalene dicarboxylate)3.
    Feldblyum JI; Dutta D; Wong-Foy AG; Dailly A; Imirzian J; Gidley DW; Matzger AJ
    Langmuir; 2013 Jun; 29(25):8146-53. PubMed ID: 23767802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High CO2-capture ability of a porous organic polymer bifunctionalized with carboxy and triazole groups.
    Xie LH; Suh MP
    Chemistry; 2013 Aug; 19(35):11590-7. PubMed ID: 23881821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligated Solvent Influence on Interpenetration and Carbon Dioxide and Water Sorption Hysteresis in a System of 2D Isoreticular MOFs.
    Chatterjee N; Oliver CL
    Inorg Chem; 2022 Feb; 61(8):3516-3526. PubMed ID: 35175770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanotubular metal-organic frameworks with high porosity based on T-shaped pyridyl dicarboxylate ligands.
    Xiang S; Huang J; Li L; Zhang J; Jiang L; Kuang X; Su CY
    Inorg Chem; 2011 Mar; 50(5):1743-8. PubMed ID: 21247087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topologies of metal-organic frameworks based on pyrimidine-5-carboxylate and unexpected gas-sorption selectivity for CO(2).
    Seo J; Jin N; Chun H
    Inorg Chem; 2010 Dec; 49(23):10833-9. PubMed ID: 21062027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of porosity by using isoreticular zeolitic imidazolate frameworks (IRZIFs) as a template for porous carbon synthesis.
    Pachfule P; Biswal BP; Banerjee R
    Chemistry; 2012 Sep; 18(36):11399-408. PubMed ID: 22829466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular simulation of hydrogen diffusion in interpenetrated metal-organic frameworks.
    Liu B; Yang Q; Xue C; Zhong C; Smit B
    Phys Chem Chem Phys; 2008 Jun; 10(22):3244-9. PubMed ID: 18500401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microporous metal-organic frameworks incorporating 1,4-benzeneditetrazolate: syntheses, structures, and hydrogen storage properties.
    Dinca M; Yu AF; Long JR
    J Am Chem Soc; 2006 Jul; 128(27):8904-13. PubMed ID: 16819886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.