BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 22678963)

  • 1. Mechanical strain applied to human fibroblasts differentially regulates skeletal myoblast differentiation.
    Hicks MR; Cao TV; Campbell DH; Standley PR
    J Appl Physiol (1985); 2012 Aug; 113(3):465-72. PubMed ID: 22678963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical strain vehicles for fibroblast-directed skeletal myoblast differentiation and myotube functionality in a novel coculture.
    Hicks MR; Cao TV; Standley PR
    Am J Physiol Cell Physiol; 2014 Oct; 307(8):C671-83. PubMed ID: 25122874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibroblasts influence muscle progenitor differentiation and alignment in contact independent and dependent manners in organized co-culture devices.
    Rao N; Evans S; Stewart D; Spencer KH; Sheikh F; Hui EE; Christman KL
    Biomed Microdevices; 2013 Feb; 15(1):161-9. PubMed ID: 22983793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteopontin expression in coculture of differentiating rat fetal skeletal fibroblasts and myoblasts.
    Pereira RO; Carvalho SN; Stumbo AC; Rodrigues CA; Porto LC; Moura AS; Carvalho L
    In Vitro Cell Dev Biol Anim; 2006; 42(1-2):4-7. PubMed ID: 16618210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular alignment and fusion: Quantifying the effect of macrophages and fibroblasts on myoblast terminal differentiation.
    Venter C; Niesler CU
    Exp Cell Res; 2018 Sep; 370(2):542-550. PubMed ID: 30016637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tensile Loaded Tissue-Engineered Human Tendon Constructs Stimulate Myotube Formation.
    Tsuchiya Y; Svensson RB; Yeung CC; Schjerling P; Kjaer M
    Tissue Eng Part A; 2023 May; 29(9-10):292-305. PubMed ID: 36680754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mannose receptor regulates myoblast motility and muscle growth.
    Jansen KM; Pavlath GK
    J Cell Biol; 2006 Jul; 174(3):403-13. PubMed ID: 16864654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel in vitro model for the assessment of postnatal myonuclear accretion.
    Kneppers A; Verdijk L; de Theije C; Corten M; Gielen E; van Loon L; Schols A; Langen R
    Skelet Muscle; 2018 Feb; 8(1):4. PubMed ID: 29444710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytokine response of cultured skeletal muscle cells stimulated with proinflammatory factors depends on differentiation stage.
    Podbregar M; Lainscak M; Prelovsek O; Mars T
    ScientificWorldJournal; 2013; 2013():617170. PubMed ID: 23509435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A quick, simple and unbiased method to quantify C2C12 myogenic differentiation.
    Veliça P; Bunce CM
    Muscle Nerve; 2011 Sep; 44(3):366-70. PubMed ID: 21996796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilin-2 modulates the efficiency of myoblast fusion during myogenic differentiation and muscle regeneration.
    Park SY; Yun Y; Lim JS; Kim MJ; Kim SY; Kim JE; Kim IS
    Nat Commun; 2016 Mar; 7():10871. PubMed ID: 26972991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of muscle formation by the fusogenic micropeptide myomixer.
    Bi P; Ramirez-Martinez A; Li H; Cannavino J; McAnally JR; Shelton JM; Sánchez-Ortiz E; Bassel-Duby R; Olson EN
    Science; 2017 Apr; 356(6335):323-327. PubMed ID: 28386024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thyroid Hormone Receptor α Plays an Essential Role in Male Skeletal Muscle Myoblast Proliferation, Differentiation, and Response to Injury.
    Milanesi A; Lee JW; Kim NH; Liu YY; Yang A; Sedrakyan S; Kahng A; Cervantes V; Tripuraneni N; Cheng SY; Perin L; Brent GA
    Endocrinology; 2016 Jan; 157(1):4-15. PubMed ID: 26451739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell fusion in skeletal muscle--central role of NFATC2 in regulating muscle cell size.
    Pavlath GK; Horsley V
    Cell Cycle; 2003; 2(5):420-3. PubMed ID: 12963831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonthermal atmospheric plasma enhances myoblast differentiation by eliciting STAT3 phosphorylation.
    Park JK; Kim YS; Kang SU; Lee YS; Won HR; Kim CH
    FASEB J; 2019 Mar; 33(3):4097-4106. PubMed ID: 30548079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of arachidonic acid and its major prostaglandin derivatives on bovine myoblast proliferation, differentiation, and fusion.
    Leng X; Jiang H
    Domest Anim Endocrinol; 2019 Apr; 67():28-36. PubMed ID: 30677541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical preconditioning enables electrophysiologic coupling of skeletal myoblast cells to myocardium.
    Neef K; Choi YH; Srinivasan SP; Treskes P; Cowan DB; Stamm C; Rubach M; Adelmann R; Wittwer T; Wahlers T
    J Thorac Cardiovasc Surg; 2012 Nov; 144(5):1176-1184.e1. PubMed ID: 22980065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of direct and indirect fibroblast cell contact on human myogenic cell behavior and gene expression in vitro.
    Bechshøft CJL; Schjerling P; Kjaer M; Mackey AL
    J Appl Physiol (1985); 2019 Aug; 127(2):342-355. PubMed ID: 31120810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing Extracellular Vesicles and Particles Derived from Skeletal Muscle Myoblasts and Myotubes and the Effect of Acute Contractile Activity.
    Bydak B; Pierdoná TM; Seif S; Sidhom K; Obi PO; Labouta HI; Gordon JW; Saleem A
    Membranes (Basel); 2022 Apr; 12(5):. PubMed ID: 35629791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of type IV collagen on myogenic characteristics of IGF-I gene-engineered myoblasts.
    Ito A; Yamamoto M; Ikeda K; Sato M; Kawabe Y; Kamihira M
    J Biosci Bioeng; 2015 May; 119(5):596-603. PubMed ID: 25454061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.