These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 22678968)
21. Relationship between motor corticospinal excitability and ventilatory response during intense exercise. Yunoki T; Matsuura R; Yamanaka R; Afroundeh R; Lian CS; Shirakawa K; Ohtsuka Y; Yano T Eur J Appl Physiol; 2016 Jun; 116(6):1117-26. PubMed ID: 27055665 [TBL] [Abstract][Full Text] [Related]
22. Arm-cycling sprints induce neuromuscular fatigue of the elbow flexors and alter corticospinal excitability of the biceps brachii. Pearcey GE; Bradbury-Squires DJ; Monks M; Philpott D; Power KE; Button DC Appl Physiol Nutr Metab; 2016 Feb; 41(2):199-209. PubMed ID: 26799694 [TBL] [Abstract][Full Text] [Related]
23. Output of human motoneuron pools to corticospinal inputs during voluntary contractions. Martin PG; Gandevia SC; Taylor JL J Neurophysiol; 2006 Jun; 95(6):3512-8. PubMed ID: 16481454 [TBL] [Abstract][Full Text] [Related]
24. Locomotor exercise induces long-lasting impairments in the capacity of the human motor cortex to voluntarily activate knee extensor muscles. Sidhu SK; Bentley DJ; Carroll TJ J Appl Physiol (1985); 2009 Feb; 106(2):556-65. PubMed ID: 19056999 [TBL] [Abstract][Full Text] [Related]
25. Patients with primary biliary cirrhosis do not show post-exercise depression of cortical excitability. Cerri G; Cocchi CA; Montagna M; Zuin M; Podda M; Cavallari P; Selmi C Clin Neurophysiol; 2010 Aug; 121(8):1321-8. PubMed ID: 20363183 [TBL] [Abstract][Full Text] [Related]
26. Differences in corticospinal excitability to the biceps brachii between arm cycling and tonic contraction are not evident at the immediate onset of movement. Forman DA; Philpott DT; Button DC; Power KE Exp Brain Res; 2016 Aug; 234(8):2339-49. PubMed ID: 27038204 [TBL] [Abstract][Full Text] [Related]
27. Muscle-specific variations in use-dependent crossed-facilitation of corticospinal pathways mediated by transcranial direct current (DC) stimulation. Carson RG; Kennedy NC; Linden MA; Britton L Neurosci Lett; 2008 Aug; 441(2):153-7. PubMed ID: 18582535 [TBL] [Abstract][Full Text] [Related]
28. Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs. Pötter-Nerger M; Fischer S; Mastroeni C; Groppa S; Deuschl G; Volkmann J; Quartarone A; Münchau A; Siebner HR J Neurophysiol; 2009 Dec; 102(6):3180-90. PubMed ID: 19726723 [TBL] [Abstract][Full Text] [Related]
29. Changes in voluntary activation assessed by transcranial magnetic stimulation during prolonged cycling exercise. Jubeau M; Rupp T; Perrey S; Temesi J; Wuyam B; Levy P; Verges S; Millet GY PLoS One; 2014; 9(2):e89157. PubMed ID: 24586559 [TBL] [Abstract][Full Text] [Related]
30. Central excitability does not limit postfatigue voluntary activation of quadriceps femoris. Kalmar JM; Cafarelli E J Appl Physiol (1985); 2006 Jun; 100(6):1757-64. PubMed ID: 16424071 [TBL] [Abstract][Full Text] [Related]
31. Motor imagery of foot dorsiflexion and gait: effects on corticospinal excitability. Bakker M; Overeem S; Snijders AH; Borm G; van Elswijk G; Toni I; Bloem BR Clin Neurophysiol; 2008 Nov; 119(11):2519-27. PubMed ID: 18838294 [TBL] [Abstract][Full Text] [Related]
32. Reductions in motoneuron excitability during sustained isometric contractions are dependent on stimulus and contraction intensity. Brownstein CG; Espeit L; Royer N; Ansdell P; Škarabot J; Souron R; Lapole T; Millet GY J Neurophysiol; 2021 May; 125(5):1636-1646. PubMed ID: 33788627 [TBL] [Abstract][Full Text] [Related]
33. Corticospinal excitability to the biceps and triceps brachii during forward and backward arm cycling is direction- and phase-dependent. Nippard AP; Lockyer EJ; Button DC; Power KE Appl Physiol Nutr Metab; 2020 Jan; 45(1):72-80. PubMed ID: 31167082 [TBL] [Abstract][Full Text] [Related]
34. Effects of endurance cycling training on neuromuscular fatigue in healthy active men. Part II: Corticospinal excitability and voluntary activation. Aboodarda SJ; Mira J; Floreani M; Jaswal R; Moon SJ; Amery K; Rupp T; Millet GY Eur J Appl Physiol; 2018 Nov; 118(11):2295-2305. PubMed ID: 30128852 [TBL] [Abstract][Full Text] [Related]
35. Corticospinal excitability is lower during rhythmic arm movement than during tonic contraction. Carroll TJ; Baldwin ER; Collins DF; Zehr EP J Neurophysiol; 2006 Feb; 95(2):914-21. PubMed ID: 16251263 [TBL] [Abstract][Full Text] [Related]
36. Reliability of Corticospinal and Motoneuronal Excitability Evaluation during Unfatiguing and Fatiguing Cycling Exercise. Mira J; Brownstein CG; Kennouche D; Varesco G; Roma E; Lapole T; Millet GY Med Sci Sports Exerc; 2024 Sep; 56(9):1849-1859. PubMed ID: 38619970 [TBL] [Abstract][Full Text] [Related]
38. Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury. Thomas SL; Gorassini MA J Neurophysiol; 2005 Oct; 94(4):2844-55. PubMed ID: 16000519 [TBL] [Abstract][Full Text] [Related]
39. Post-exercise facilitation and depression of motor evoked potentials to transcranial magnetic stimulation: a study in multiple sclerosis. Perretti A; Balbi P; Orefice G; Trojano L; Marcantonio L; Brescia-Morra V; Ascione S; Manganelli F; Conte G; Santoro L Clin Neurophysiol; 2004 Sep; 115(9):2128-33. PubMed ID: 15294215 [TBL] [Abstract][Full Text] [Related]
40. Changes in segmental and motor cortical output with contralateral muscle contractions and altered sensory inputs in humans. Hortobágyi T; Taylor JL; Petersen NT; Russell G; Gandevia SC J Neurophysiol; 2003 Oct; 90(4):2451-9. PubMed ID: 14534271 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]