These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 22679500)
1. Fractional dynamics of globally slow transcription and its impact on deterministic genetic oscillation. Wei K; Gao S; Zhong S; Ma H PLoS One; 2012; 7(6):e38383. PubMed ID: 22679500 [TBL] [Abstract][Full Text] [Related]
2. The transition between stochastic and deterministic behavior in an excitable gene circuit. Hilborn RC; Brookshire B; Mattingly J; Purushotham A; Sharma A PLoS One; 2012; 7(4):e34536. PubMed ID: 22509317 [TBL] [Abstract][Full Text] [Related]
3. A computational framework for qualitative simulation of nonlinear dynamical models of gene-regulatory networks. Ironi L; Panzeri L BMC Bioinformatics; 2009 Oct; 10 Suppl 12(Suppl 12):S14. PubMed ID: 19828074 [TBL] [Abstract][Full Text] [Related]
4. Genetic oscillation deduced from Hopf bifurcation in a genetic regulatory network with delays. Xiao M; Cao J Math Biosci; 2008 Sep; 215(1):55-63. PubMed ID: 18585740 [TBL] [Abstract][Full Text] [Related]
5. A general fractional-order dynamical network: synchronization behavior and state tuning. Wang J; Xiong X Chaos; 2012 Jun; 22(2):023102. PubMed ID: 22757509 [TBL] [Abstract][Full Text] [Related]
6. A simple negative interaction in the positive transcriptional feedback of a single gene is sufficient to produce reliable oscillations. Miró-Bueno JM; Rodríguez-Patón A PLoS One; 2011; 6(11):e27414. PubMed ID: 22205920 [TBL] [Abstract][Full Text] [Related]
7. Parameter mismatches and oscillation death in coupled oscillators. Koseska A; Volkov E; Kurths J Chaos; 2010 Jun; 20(2):023132. PubMed ID: 20590328 [TBL] [Abstract][Full Text] [Related]
8. Exponential convergence analysis of uncertain genetic regulatory networks with time-varying delays. Wang W; Nguang SK; Zhong S; Liu F ISA Trans; 2014 Sep; 53(5):1544-53. PubMed ID: 24950609 [TBL] [Abstract][Full Text] [Related]
9. Oscillation of a class of fractional differential equations with damping term. Qin H; Zheng B ScientificWorldJournal; 2013; 2013():685621. PubMed ID: 24027448 [TBL] [Abstract][Full Text] [Related]
10. Modeling the tunability of the dual-feedback genetic oscillator. Joshi YJ; Jawale YK; Athale CA Phys Rev E; 2020 Jan; 101(1-1):012417. PubMed ID: 32069648 [TBL] [Abstract][Full Text] [Related]
11. Biphasic amplitude oscillator characterized by distinct dynamics of trough and crest. Jin J; Xu F; Liu Z; Qi H; Yao C; Shuai J; Li X Phys Rev E; 2023 Dec; 108(6-1):064412. PubMed ID: 38243441 [TBL] [Abstract][Full Text] [Related]
12. Intrinsic noise and division cycle effects on an abstract biological oscillator. Stamatakis M; Mantzaris NV Chaos; 2010 Sep; 20(3):033118. PubMed ID: 20887058 [TBL] [Abstract][Full Text] [Related]
13. Hybrid modeling of the crosstalk between signaling and transcriptional networks using ordinary differential equations and multi-valued logic. Khan FM; Schmitz U; Nikolov S; Engelmann D; Pützer BM; Wolkenhauer O; Vera J Biochim Biophys Acta; 2014 Jan; 1844(1 Pt B):289-98. PubMed ID: 23692959 [TBL] [Abstract][Full Text] [Related]
14. A nonlinear discrete dynamical model for transcriptional regulation: construction and properties. Goutsias J; Kim S Biophys J; 2004 Apr; 86(4):1922-45. PubMed ID: 15041638 [TBL] [Abstract][Full Text] [Related]
15. Nonlinear energy transfer in classical and quantum systems. Manevitch L; Kovaleva A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022904. PubMed ID: 23496588 [TBL] [Abstract][Full Text] [Related]
16. An oscillating reaction network with an exact closed form solution in the time domain. Hellerstein J BMC Bioinformatics; 2023 Dec; 24(1):466. PubMed ID: 38071308 [TBL] [Abstract][Full Text] [Related]
17. On the functional diversity of dynamical behaviour in genetic and metabolic feedback systems. Nguyen LK; Kulasiri D BMC Syst Biol; 2009 May; 3():51. PubMed ID: 19432996 [TBL] [Abstract][Full Text] [Related]
18. Coupled oscillator cooperativity as a control mechanism in chronobiology. Heltberg MS; Jiang Y; Fan Y; Zhang Z; Nordentoft MS; Lin W; Qian L; Ouyang Q; Jensen MH; Wei P Cell Syst; 2023 May; 14(5):382-391.e5. PubMed ID: 37201507 [TBL] [Abstract][Full Text] [Related]
19. Global entrainment of transcriptional systems to periodic inputs. Russo G; di Bernardo M; Sontag ED PLoS Comput Biol; 2010 Apr; 6(4):e1000739. PubMed ID: 20418962 [TBL] [Abstract][Full Text] [Related]
20. Boolean network approach to negative feedback loops of the p53 pathways: synchronized dynamics and stochastic limit cycles. Ge H; Qian M J Comput Biol; 2009 Jan; 16(1):119-32. PubMed ID: 19119996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]