These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 22680457)

  • 21. Monte Carlo study of the triangular Blume-Capel model under bond randomness.
    Theodorakis PE; Fytas NG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011140. PubMed ID: 23005401
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bond and site percolation in three dimensions.
    Wang J; Zhou Z; Zhang W; Garoni TM; Deng Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052107. PubMed ID: 23767487
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantum critical behavior of the quantum Ising model on fractal lattices.
    Yi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012118. PubMed ID: 25679581
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of the dynamic and static critical exponents of the two-dimensional three-state Potts model using linearly varying temperature.
    Fan S; Zhong F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041141. PubMed ID: 17994970
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Finite-size scaling in asymmetric systems of percolating sticks.
    Žeželj M; Stanković I; Belić A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021101. PubMed ID: 22463147
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Asymptotic dynamic scaling behavior of the (1+1)-dimensional Wolf-Villain model.
    Xun Z; Tang G; Han K; Xia H; Hao D; Li Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041126. PubMed ID: 22680438
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anisotropic anomalous diffusion modulated by log-periodic oscillations.
    Padilla L; Mártin HO; Iguain JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011106. PubMed ID: 23005367
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Continuous percolation phase transitions of random networks under a generalized Achlioptas process.
    Fan J; Liu M; Li L; Chen X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061110. PubMed ID: 23005054
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-State Majority-vote Model on Scale-Free Networks and the Unitary Relation for Critical Exponents.
    Vilela ALM; Zubillaga BJ; Wang C; Wang M; Du R; Stanley HE
    Sci Rep; 2020 May; 10(1):8255. PubMed ID: 32427868
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Universality classes of the absorbing state transition in a system with interacting static and diffusive populations.
    Argolo C; Quintino Y; Siqueira Y; Gleria I; Lyra ML
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061127. PubMed ID: 20365138
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Critical behavior of a three-dimensional hardcore-cylinder composite system.
    Silva J; Simoes R; Lanceros-Mendez S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021115. PubMed ID: 22463161
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Droplet finite-size scaling of the majority-vote model on scale-free networks.
    Alencar DSM; Alves TFA; Lima FWS; Ferreira RS; Alves GA; Macedo-Filho A
    Phys Rev E; 2023 Jul; 108(1-1):014308. PubMed ID: 37583232
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monte Carlo study of the phase transition in the critical behavior of the Ising model with shear.
    Saracco GP; Gonnella G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051126. PubMed ID: 20364966
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Critical behavior of the majority voter model is independent of transition rates.
    Kwak W; Yang JS; Sohn JI; Kim IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):061110. PubMed ID: 17677223
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scaling functions for systems with finite range of interaction.
    Sampaio-Filho CI; Moreira FG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032142. PubMed ID: 24125248
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensional randomly dilute Ising model: Monte Carlo results.
    Calabrese P; Martín-Mayor V; Pelissetto A; Vicari E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036136. PubMed ID: 14524861
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure, dynamic properties, and phase transitions of tethered membranes: a Monte Carlo simulation study.
    Popova H; Milchev A
    Ann N Y Acad Sci; 2009 Apr; 1161():397-406. PubMed ID: 19426333
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conductivity of Coniglio-Klein clusters.
    Posé N; Araújo NA; Herrmann HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051140. PubMed ID: 23214771
    [TBL] [Abstract][Full Text] [Related]  

  • 39. First-order phase transitions in repulsive rigid k-mers on two-dimensional lattices.
    Pasinetti PM; Romá F; Ramirez-Pastor AJ
    J Chem Phys; 2012 Feb; 136(6):064113. PubMed ID: 22360175
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Finite-size scaling analysis on the phase transition of a ferromagnetic polymer chain model.
    Luo MB
    J Chem Phys; 2006 Jan; 124(3):034903. PubMed ID: 16438610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.