These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 22680458)

  • 1. Quantum Otto engine of a two-level atom with single-mode fields.
    Wang J; Wu Z; He J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041148. PubMed ID: 22680458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiency at maximum power of a quantum heat engine based on two coupled oscillators.
    Wang J; Ye Z; Lai Y; Li W; He J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062134. PubMed ID: 26172688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of reservoir squeezing on quantum systems and work extraction.
    Huang XL; Wang T; Yi XX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051105. PubMed ID: 23214736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency and its bounds for a quantum Einstein engine at maximum power.
    Yan H; Guo H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051135. PubMed ID: 23214766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal entanglement in two-atom cavity QED and the entangled quantum Otto engine.
    Wang H; Liu S; He J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041113. PubMed ID: 19518179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of a multilevel quantum heat engine of an ideal N-particle Fermi system.
    Wang R; Wang J; He J; Ma Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021133. PubMed ID: 23005748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance analysis of a two-state quantum heat engine working with a single-mode radiation field in a cavity.
    Wang J; He J; He X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041127. PubMed ID: 22181107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum Brayton cycle with coupled systems as working substance.
    Huang XL; Wang LC; Yi XX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012144. PubMed ID: 23410319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiparticle quantum Szilard engine with optimal cycles assisted by a Maxwell's demon.
    Cai CY; Dong H; Sun CP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031114. PubMed ID: 22587045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficiency at maximum power of a heat engine working with a two-level atomic system.
    Wang R; Wang J; He J; Ma Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042119. PubMed ID: 23679385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum correlated heat engine with spin squeezing.
    Altintas F; Hardal AÜ; Müstecaplıoglu ÖE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032102. PubMed ID: 25314390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum refrigerators and the third law of thermodynamics.
    Levy A; Alicki R; Kosloff R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061126. PubMed ID: 23005070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum collapse and the second law of thermodynamics.
    Hormoz S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022129. PubMed ID: 23496481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the superposition principle for enhancing the efficiency of the quantum-mechanical Carnot engine.
    Abe S; Okuyama S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011104. PubMed ID: 22400509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minimal universal quantum heat machine.
    Gelbwaser-Klimovsky D; Alicki R; Kurizki G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012140. PubMed ID: 23410316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance analysis of an irreversible quantum heat engine working with harmonic oscillators.
    Lin B; Chen J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046105. PubMed ID: 12786434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiency and its bounds for thermal engines at maximum power using Newton's law of cooling.
    Yan H; Guo H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011146. PubMed ID: 22400551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal efficiency of a noisy quantum heat engine.
    Stefanatos D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012119. PubMed ID: 25122263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement-based quantum Otto engine with a two-spin system coupled by anisotropic interaction: Enhanced efficiency at finite times.
    Purkait C; Biswas A
    Phys Rev E; 2023 May; 107(5-1):054110. PubMed ID: 37329072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Work and efficiency of quantum Otto cycles in power-law trapping potentials.
    Zheng Y; Poletti D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012145. PubMed ID: 25122289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.