These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22680514)

  • 1. Erythrocyte deformation in high-throughput optical stretchers.
    Sraj I; Szatmary AC; Desai SA; Marr DW; Eggleton CD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041923. PubMed ID: 22680514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell deformation cytometry using diode-bar optical stretchers.
    Sraj I; Eggleton CD; Jimenez R; Hoover E; Squier J; Chichester J; Marr DW
    J Biomed Opt; 2010; 15(4):047010. PubMed ID: 20799841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring cell mechanics by optical alignment compression cytometry.
    Roth KB; Eggleton CD; Neeves KB; Marr DW
    Lab Chip; 2013 Apr; 13(8):1571-7. PubMed ID: 23440063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sheathless inertial cell ordering for extreme throughput flow cytometry.
    Hur SC; Tse HT; Di Carlo D
    Lab Chip; 2010 Feb; 10(3):274-80. PubMed ID: 20090998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic fatigue measurement of human erythrocytes using dielectrophoresis.
    Qiang Y; Liu J; Du E
    Acta Biomater; 2017 Jul; 57():352-362. PubMed ID: 28526627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An optofluidic "tweeze-and-drag" cell stretcher in a microfluidic channel.
    Yao Z; Kwan CC; Poon AW
    Lab Chip; 2020 Feb; 20(3):601-613. PubMed ID: 31909404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linear diode laser bar optical stretchers for cell deformation.
    Sraj I; Marr DW; Eggleton CD
    Biomed Opt Express; 2010 Aug; 1(2):482-488. PubMed ID: 21258483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput linear optical stretcher for mechanical characterization of blood cells.
    Roth KB; Neeves KB; Squier J; Marr DW
    Cytometry A; 2016 Apr; 89(4):391-7. PubMed ID: 26565892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impedance spectroscopy using maximum length sequences: application to single cell analysis.
    Gawad S; Sun T; Green NG; Morgan H
    Rev Sci Instrum; 2007 May; 78(5):054301. PubMed ID: 17552843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput sorting and analysis of human sperm with a ring-shaped laser trap.
    Shao B; Shi LZ; Nascimento JM; Botvinick EL; Ozkan M; Berns MW; Esener SC
    Biomed Microdevices; 2007 Jun; 9(3):361-9. PubMed ID: 17226100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffraction Phase Cytometry: blood on a CD-ROM.
    Mir M; Wang Z; Tangella K; Popescu G
    Opt Express; 2009 Feb; 17(4):2579-85. PubMed ID: 19219161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applying combined optical tweezers and fluorescence microscopy technologies to manipulate cell adhesions for cell-to-cell interaction study.
    Gou X; Han HC; Hu S; Leung AY; Sun D
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2308-15. PubMed ID: 23549881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered tumor cell apoptosis monitoring method based on dynamic laser tweezers.
    Zhang Y; Wu X; Min C; Zhu S; Urbach HP; Yuan X
    Biomed Res Int; 2014; 2014():279408. PubMed ID: 24800217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlations between the experimental and numerical investigations on the mechanical properties of erythrocyte by laser stretching.
    Li C; Liu YP; Liu KK; Lai AK
    IEEE Trans Nanobioscience; 2008 Mar; 7(1):80-90. PubMed ID: 18334458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatially selecting a single cell for lysis using light-induced electric fields.
    Witte C; Kremer C; Chanasakulniyom M; Reboud J; Wilson R; Cooper JM; Neale SL
    Small; 2014 Aug; 10(15):3026-31. PubMed ID: 24719234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of Plasmodium falciparum-infected red blood cells by optical stretching.
    Mauritz JM; Tiffert T; Seear R; Lautenschläger F; Esposito A; Lew VL; Guck J; Kaminski CF
    J Biomed Opt; 2010; 15(3):030517. PubMed ID: 20615000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of single-cell adhesion strength using a microfluidic assay.
    Christ KV; Williamson KB; Masters KS; Turner KT
    Biomed Microdevices; 2010 Jun; 12(3):443-55. PubMed ID: 20213215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-of-flight optophoresis analysis of live whole cells in microfluidic channels.
    Zhang H; Tu E; Hagen ND; Schnabel CA; Paliotti MJ; Hoo WS; Nguyen PM; Kohrumel JR; Butler WF; Chachisvillis M; Marchand PJ
    Biomed Microdevices; 2004 Mar; 6(1):11-21. PubMed ID: 15307440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing.
    Mao X; Lin SC; Dong C; Huang TJ
    Lab Chip; 2009 Jun; 9(11):1583-9. PubMed ID: 19458866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silicon-on-insulator multimode-interference waveguide-based arrayed optical tweezers (SMART) for two-dimensional microparticle trapping and manipulation.
    Lei T; Poon AW
    Opt Express; 2013 Jan; 21(2):1520-30. PubMed ID: 23389134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.