BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 22680549)

  • 1. Classical master equation for excitonic transport under the influence of an environment.
    Eisfeld A; Briggs JS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046118. PubMed ID: 22680549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex quantum network model of energy transfer in photosynthetic complexes.
    Ai BQ; Zhu SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061917. PubMed ID: 23367985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Equivalence of quantum and classical coherence in electronic energy transfer.
    Briggs JS; Eisfeld A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051911. PubMed ID: 21728575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient energy transfer in light-harvesting systems: quantum-classical comparison, flux network, and robustness analysis.
    Wu J; Liu F; Ma J; Silbey RJ; Cao J
    J Chem Phys; 2012 Nov; 137(17):174111. PubMed ID: 23145721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems.
    Engel GS; Calhoun TR; Read EL; Ahn TK; Mancal T; Cheng YC; Blankenship RE; Fleming GR
    Nature; 2007 Apr; 446(7137):782-6. PubMed ID: 17429397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robustness, efficiency, and optimality in the Fenna-Matthews-Olson photosynthetic pigment-protein complex.
    Baker LA; Habershon S
    J Chem Phys; 2015 Sep; 143(10):105101. PubMed ID: 26374060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial propagation of excitonic coherence enables ratcheted energy transfer.
    Hoyer S; Ishizaki A; Whaley KB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041911. PubMed ID: 23214619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proposal for probing energy transfer pathway by single-molecule pump-dump experiment.
    Tao MJ; Ai Q; Deng FG; Cheng YC
    Sci Rep; 2016 Jun; 6():27535. PubMed ID: 27277702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environment-assisted quantum walks in photosynthetic energy transfer.
    Mohseni M; Rebentrost P; Lloyd S; Aspuru-Guzik A
    J Chem Phys; 2008 Nov; 129(17):174106. PubMed ID: 19045332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems.
    Huo P; Coker DF
    J Chem Phys; 2012 Mar; 136(11):115102. PubMed ID: 22443796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical Study on the Effect of Environment on Excitation Energy Transfer in Photosynthetic Light-Harvesting Systems.
    Cui X; Yan Y; Wei J
    J Phys Chem B; 2020 Mar; 124(12):2354-2362. PubMed ID: 32130013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic energy transfer in model photosynthetic systems: Markovian vs. non-Markovian dynamics.
    Singh N; Brumer P
    Faraday Discuss; 2011; 153():41-50; discussion 73-91. PubMed ID: 22452072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Explicit correlated exciton-vibrational dynamics of the FMO complex.
    Schulze J; Kühn O
    J Phys Chem B; 2015 May; 119(20):6211-6. PubMed ID: 25927682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer.
    Ishizaki A; Calhoun TR; Schlau-Cohen GS; Fleming GR
    Phys Chem Chem Phys; 2010 Jul; 12(27):7319-37. PubMed ID: 20544102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Pigment-Protein Coupling in the Energy Transport Dynamics in the Fenna-Matthews-Olson Complex.
    Cui X; Yan Y; Wei J
    J Phys Chem B; 2021 Nov; 125(43):11884-11892. PubMed ID: 34669415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iterative linearized density matrix propagation for modeling coherent excitation energy transfer in photosynthetic light harvesting.
    Huo P; Coker DF
    J Chem Phys; 2010 Nov; 133(18):184108. PubMed ID: 21073214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-Dependent Fluctuations Optimize Electronic Energy Transfer in the Fenna-Matthews-Olson Protein.
    Saito S; Higashi M; Fleming GR
    J Phys Chem B; 2019 Nov; 123(46):9762-9772. PubMed ID: 31657928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All-atom semiclassical dynamics study of quantum coherence in photosynthetic Fenna-Matthews-Olson complex.
    Kim HW; Kelly A; Park JW; Rhee YM
    J Am Chem Soc; 2012 Jul; 134(28):11640-51. PubMed ID: 22708971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The electronic couplings in electron transfer and excitation energy transfer.
    Hsu CP
    Acc Chem Res; 2009 Apr; 42(4):509-18. PubMed ID: 19215069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the interpretation of quantum coherent beats observed in two-dimensional electronic spectra of photosynthetic light harvesting complexes.
    Ishizaki A; Fleming GR
    J Phys Chem B; 2011 May; 115(19):6227-33. PubMed ID: 21488648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.