These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 22680555)

  • 1. Oscillation death in asymmetrically delay-coupled oscillators.
    Zou W; Tang Y; Li L; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046206. PubMed ID: 22680555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partial time-delay coupling enlarges death island of coupled oscillators.
    Zou W; Zhan M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):065204. PubMed ID: 20365221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency discontinuity and amplitude death with time-delay asymmetry.
    Punetha N; Karnatak R; Prasad A; Kurths J; Ramaswamy R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046204. PubMed ID: 22680553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Routes to complex dynamics in a ring of unidirectionally coupled systems.
    Perlikowski P; Yanchuk S; Wolfrum M; Stefanski A; Mosiolek P; Kapitaniak T
    Chaos; 2010 Mar; 20(1):013111. PubMed ID: 20370266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchronization phenomena for a pair of locally coupled chaotic electrochemical oscillators: a survey.
    Rivera M; Martínez Mekler G; Parmananda P
    Chaos; 2006 Sep; 16(3):037105. PubMed ID: 17014239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chaos suppression through asymmetric coupling.
    Bragard J; Vidal G; Mancini H; Mendoza C; Boccaletti S
    Chaos; 2007 Dec; 17(4):043107. PubMed ID: 18163771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of delay-induced oscillation death by coupling phase in coupled oscillators.
    Zou W; Lu J; Tang Y; Zhang C; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066208. PubMed ID: 22304179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete chaotic synchronization and exclusion of mutual Pyragas control in two delay-coupled Rössler-type oscillators.
    Jüngling T; Benner H; Shirahama H; Fukushima K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056208. PubMed ID: 22181485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relaying phase synchrony in chaotic oscillator chains.
    Agrawal M; Prasad A; Ramaswamy R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056205. PubMed ID: 22181482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Universal occurrence of the phase-flip bifurcation in time-delay coupled systems.
    Prasad A; Dana SK; Karnatak R; Kurths J; Blasius B; Ramaswamy R
    Chaos; 2008 Jun; 18(2):023111. PubMed ID: 18601478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous mode switching in coupled oscillators competing for constant amounts of resources.
    Hirata Y; Aono M; Hara M; Aihara K
    Chaos; 2010 Mar; 20(1):013117. PubMed ID: 20370272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the frequency precision of oscillators by synchronization.
    Cross MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046214. PubMed ID: 22680563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchronization regimes in conjugate coupled chaotic oscillators.
    Karnatak R; Ramaswamy R; Prasad A
    Chaos; 2009 Sep; 19(3):033143. PubMed ID: 19792023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forced synchronization of a self-sustained chaotic oscillator.
    González Salas JS; Campos Cantón E; Ordaz Salazar FC; Campos Cantón I
    Chaos; 2008 Jun; 18(2):023136. PubMed ID: 18601502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spurious detection of phase synchronization in coupled nonlinear oscillators.
    Xu L; Chen Z; Hu K; Stanley HE; Ivanov PCh
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):065201. PubMed ID: 16906897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amplitude death in complex networks induced by environment.
    Resmi V; Ambika G; Amritkar RE; Rangarajan G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046211. PubMed ID: 22680560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amplitude death phenomena in delay-coupled Hamiltonian systems.
    Saxena G; Prasad A; Ramaswamy R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052912. PubMed ID: 23767603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition from amplitude to oscillation death under mean-field diffusive coupling.
    Banerjee T; Ghosh D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052912. PubMed ID: 25353866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amplitude and phase dynamics in oscillators with distributed-delay coupling.
    Kyrychko YN; Blyuss KB; Schöll E
    Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120466. PubMed ID: 23960224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting anomalous phase synchronization from time series.
    Tokuda IT; Kumar Dana S; Kurths J
    Chaos; 2008 Jun; 18(2):023134. PubMed ID: 18601500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.