These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 22680759)

  • 1. Crystallization in a dense suspension of self-propelled particles.
    Bialké J; Speck T; Löwen H
    Phys Rev Lett; 2012 Apr; 108(16):168301. PubMed ID: 22680759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonequilibrium glassy dynamics of self-propelled hard disks.
    Berthier L
    Phys Rev Lett; 2014 Jun; 112(22):220602. PubMed ID: 24949749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of hydrodynamic interactions on the crystallization of passive and active colloidal systems.
    Li S; Jiang H; Hou Z
    Soft Matter; 2015 Jul; 11(28):5712-8. PubMed ID: 26081556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of confinement on dynamical heterogeneities in dense colloidal samples.
    Edmond KV; Nugent CR; Weeks ER
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041401. PubMed ID: 22680469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles.
    Buttinoni I; Bialké J; Kümmel F; Löwen H; Bechinger C; Speck T
    Phys Rev Lett; 2013 Jun; 110(23):238301. PubMed ID: 25167534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glass transition and dynamical heterogeneities in charged colloidal suspensions under pressure.
    Tata BV; Mohanty PS; Valsakumar MC
    Phys Rev Lett; 2002 Jan; 88(1):018302. PubMed ID: 11800994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity-induced phase separation and self-assembly in mixtures of active and passive particles.
    Stenhammar J; Wittkowski R; Marenduzzo D; Cates ME
    Phys Rev Lett; 2015 Jan; 114(1):018301. PubMed ID: 25615509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glassy dynamics of athermal self-propelled particles: Computer simulations and a nonequilibrium microscopic theory.
    Szamel G; Flenner E; Berthier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062304. PubMed ID: 26172716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freezing transition and correlated motion in a quasi-two-dimensional colloid suspension.
    Zangi R; Rice SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 1):061508. PubMed ID: 14754213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and dynamics of a phase-separating active colloidal fluid.
    Redner GS; Hagan MF; Baskaran A
    Phys Rev Lett; 2013 Feb; 110(5):055701. PubMed ID: 23414035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data-driven criterion for the solid-liquid transition of two-dimensional self-propelled colloidal particles far from equilibrium.
    Guo WC; Ai BQ; He L
    Phys Rev E; 2021 Oct; 104(4-1):044611. PubMed ID: 34781493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dressing of driven colloidal particles in a subcritical liquid suspension.
    Chakrabarti J; Löwen H
    J Chem Phys; 2008 Oct; 129(13):134507. PubMed ID: 19045105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable long range forces mediated by self-propelled colloidal hard spheres.
    Ni R; Cohen Stuart MA; Bolhuis PG
    Phys Rev Lett; 2015 Jan; 114(1):018302. PubMed ID: 25615510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emergent states in dense systems of active rods: from swarming to turbulence.
    Wensink HH; Löwen H
    J Phys Condens Matter; 2012 Nov; 24(46):464130. PubMed ID: 23114651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Living crystals of light-activated colloidal surfers.
    Palacci J; Sacanna S; Steinberg AP; Pine DJ; Chaikin PM
    Science; 2013 Feb; 339(6122):936-40. PubMed ID: 23371555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleation pathway and kinetics of phase-separating active Brownian particles.
    Richard D; Löwen H; Speck T
    Soft Matter; 2016 Jun; 12(24):5257-64. PubMed ID: 27126952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Driving dynamic colloidal assembly using eccentric self-propelled colloids.
    Ma Z; Lei QL; Ni R
    Soft Matter; 2017 Dec; 13(47):8940-8946. PubMed ID: 29144529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient ordering in a quasi-two-dimensional liquid near freezing.
    Sheu AS; Rice S
    J Chem Phys; 2008 Jun; 128(24):244517. PubMed ID: 18601358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freezing of Lennard-Jones fluid on a patterned substrate.
    Zhang H; Peng S; Mao L; Zhou X; Liang J; Wan C; Zheng J; Ju X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062410. PubMed ID: 25019797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of a depletion interaction on dynamical heterogeneity in a dense quasi-two-dimensional colloid liquid.
    Ho HM; Cui B; Repel S; Lin B; Rice SA
    J Chem Phys; 2004 Nov; 121(17):8627-34. PubMed ID: 15511189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.