These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 22680894)

  • 1. High-Tc spin superfluidity in antiferromagnets.
    Bunkov YM; Alakshin EM; Gazizulin RR; Klochkov AV; Kuzmin VV; L'vov VS; Tagirov MS
    Phys Rev Lett; 2012 Apr; 108(17):177002. PubMed ID: 22680894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnon Bose-Einstein condensation and spin superfluidity.
    Bunkov YM; Volovik GE
    J Phys Condens Matter; 2010 Apr; 22(16):164210. PubMed ID: 21386416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spin superfluidity and coherent spin precession.
    Bunkov YM
    J Phys Condens Matter; 2009 Apr; 21(16):164201. PubMed ID: 21825381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bose-Einstein Condensation of Magnons and Spin Superfluidity in the Polar Phase of ^{3}He.
    Autti S; Dmitriev VV; Mäkinen JT; Rysti J; Soldatov AA; Volovik GE; Yudin AN; Eltsov VB
    Phys Rev Lett; 2018 Jul; 121(2):025303. PubMed ID: 30085748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bose-Einstein condensation of magnons in atomic hydrogen gas.
    Vainio O; Ahokas J; Järvinen J; Lehtonen L; Novotny S; Sheludiakov S; Suominen KA; Vasiliev S; Zvezdov D; Khmelenko VV; Lee DM
    Phys Rev Lett; 2015 Mar; 114(12):125304. PubMed ID: 25860755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bogoliubov waves and distant transport of magnon condensate at room temperature.
    Bozhko DA; Kreil AJE; Musiienko-Shmarova HY; Serga AA; Pomyalov A; L'vov VS; Hillebrands B
    Nat Commun; 2019 Jun; 10(1):2460. PubMed ID: 31165731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New light on the intriguing history of superfluidity in liquid (4)He.
    Griffin A
    J Phys Condens Matter; 2009 Apr; 21(16):164220. PubMed ID: 21825400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental signatures of spin superfluid ground state in canted antiferromagnet Cr
    Yuan W; Zhu Q; Su T; Yao Y; Xing W; Chen Y; Ma Y; Lin X; Shi J; Shindou R; Xie XC; Han W
    Sci Adv; 2018 Apr; 4(4):eaat1098. PubMed ID: 29662956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping.
    Demokritov SO; Demidov VE; Dzyapko O; Melkov GA; Serga AA; Hillebrands B; Slavin AN
    Nature; 2006 Sep; 443(7110):430-3. PubMed ID: 17006509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilizing Mechanism for Bose-Einstein Condensation of Interacting Magnons in Ferrimagnets and Ferromagnets.
    Arakawa N
    Phys Rev Lett; 2018 Nov; 121(18):187202. PubMed ID: 30444403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct observation of the superfluid phase transition in ultracold Fermi gases.
    Zwierlein MW; Schunck CH; Schirotzek A; Ketterle W
    Nature; 2006 Jul; 442(7098):54-8. PubMed ID: 16823447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for a common physical origin of the Landau and BEC theories of superfluidity.
    Diallo SO; Azuah RT; Abernathy DL; Taniguchi J; Suzuki M; Bossy J; Mulders N; Glyde HR
    Phys Rev Lett; 2014 Nov; 113(21):215302. PubMed ID: 25479500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of a Time Quasicrystal and Its Transition to a Superfluid Time Crystal.
    Autti S; Eltsov VB; Volovik GE
    Phys Rev Lett; 2018 May; 120(21):215301. PubMed ID: 29883148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory of Bose-Einstein condensation in a microwave-driven interacting magnon gas.
    Rezende SM
    J Phys Condens Matter; 2010 Apr; 22(16):164211. PubMed ID: 21386417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-temperature heat transport in the low-dimensional quantum magnet NiCl2-4SC(NH2)2.
    Sun XF; Tao W; Wang XM; Fan C
    Phys Rev Lett; 2009 Apr; 102(16):167202. PubMed ID: 19518749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spin current as a probe of quantum materials.
    Han W; Maekawa S; Xie XC
    Nat Mater; 2020 Feb; 19(2):139-152. PubMed ID: 31451780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bose-Einstein condensation of quasiparticles in graphene.
    Berman OL; Kezerashvili RY; Lozovik YE
    Nanotechnology; 2010 Apr; 21(13):134019. PubMed ID: 20208112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of quantum liquids in confinement, theory and experiment.
    Glyde HR; Albergamo F; Azuah RT; Bossy J; Fåk B
    Eur Phys J E Soft Matter; 2003 Sep; 12(1):63-8. PubMed ID: 15007681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing anomalous longitudinal fluctuations of the interacting Bose gas via Bose-Einstein condensation of magnons.
    Kreisel A; Hasselmann N; Kopietz P
    Phys Rev Lett; 2007 Feb; 98(6):067203. PubMed ID: 17358981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bose-Einstein condensation and superfluidity of trapped polaritons in graphene and quantum wells embedded in a microcavity.
    Berman OL; Kezerashvili RY; Lozovik YE; Snoke DW
    Philos Trans A Math Phys Eng Sci; 2010 Dec; 368(1932):5459-82. PubMed ID: 21041225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.