These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 22681071)
1. Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty = 5.7×10(-15). McFerran JJ; Yi L; Mejri S; Di Manno S; Zhang W; Guéna J; Le Coq Y; Bize S Phys Rev Lett; 2012 May; 108(18):183004. PubMed ID: 22681071 [TBL] [Abstract][Full Text] [Related]
2. Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S(0)↔3P(0) clock transition. Yi L; Mejri S; McFerran JJ; Le Coq Y; Bize S Phys Rev Lett; 2011 Feb; 106(7):073005. PubMed ID: 21405514 [TBL] [Abstract][Full Text] [Related]
3. Uncertainty Evaluation of an Kobayashi T; Akamatsu D; Hisai Y; Tanabe T; Inaba H; Suzuyama T; Hong FL; Hosaka K; Yasuda M IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2449-2458. PubMed ID: 30235125 [TBL] [Abstract][Full Text] [Related]
4. Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice. Barber ZW; Hoyt CW; Oates CW; Hollberg L; Taichenachev AV; Yudin VI Phys Rev Lett; 2006 Mar; 96(8):083002. PubMed ID: 16606176 [TBL] [Abstract][Full Text] [Related]
5. Laser locking to the 199Hg 1S0-3P0 clock transition with 5.4 × 10(-15)/✓τ fractional frequency instability. McFerran JJ; Magalhães DV; Mandache C; Millo J; Zhang W; Le Coq Y; Santarelli G; Bize S Opt Lett; 2012 Sep; 37(17):3477-9. PubMed ID: 22940921 [TBL] [Abstract][Full Text] [Related]
7. Observation and absolute frequency measurements of the 1S0-3P0 optical clock transition in neutral ytterbium. Hoyt CW; Barber ZW; Oates CW; Fortier TM; Diddams SA; Hollberg L Phys Rev Lett; 2005 Aug; 95(8):083003. PubMed ID: 16196856 [TBL] [Abstract][Full Text] [Related]
8. Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury. Petersen M; Chicireanu R; Dawkins ST; Magalhães DV; Mandache C; Le Coq Y; Clairon A; Bize S Phys Rev Lett; 2008 Oct; 101(18):183004. PubMed ID: 18999828 [TBL] [Abstract][Full Text] [Related]
9. An optical lattice clock. Takamoto M; Hong FL; Higashi R; Katori H Nature; 2005 May; 435(7040):321-4. PubMed ID: 15902252 [TBL] [Abstract][Full Text] [Related]
10. Photoionization cross sections of ultracold Witkowski M; Bilicki S; Bober M; Kovačić D; Singh V; Tonoyan A; Zawada M Opt Express; 2022 Jun; 30(12):21423-21438. PubMed ID: 36224862 [TBL] [Abstract][Full Text] [Related]
11. A superradiant clock laser on a magic wavelength optical lattice. Maier T; Kraemer S; Ostermann L; Ritsch H Opt Express; 2014 Jun; 22(11):13269-79. PubMed ID: 24921521 [TBL] [Abstract][Full Text] [Related]
12. Accurate optical lattice clock with 87Sr atoms. Le Targat R; Baillard X; Fouché M; Brusch A; Tcherbakoff O; Rovera GD; Lemonde P Phys Rev Lett; 2006 Sep; 97(13):130801. PubMed ID: 17026019 [TBL] [Abstract][Full Text] [Related]
13. Dual-Mode Operation of an Optical Lattice Clock Using Strontium and Ytterbium Atoms. Akamatsu D; Kobayashi T; Hisai Y; Tanabe T; Hosaka K; Yasuda M; Hong FL IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):1069-1075. PubMed ID: 29856725 [TBL] [Abstract][Full Text] [Related]
14. A pyramid MOT with integrated optical cavities as a cold atom platform for an optical lattice clock. Bowden W; Hobson R; Hill IR; Vianello A; Schioppo M; Silva A; Margolis HS; Baird PEG; Gill P Sci Rep; 2019 Aug; 9(1):11704. PubMed ID: 31406188 [TBL] [Abstract][Full Text] [Related]
15. Systematic evaluation of a Gao Q; Zhou M; Han C; Li S; Zhang S; Yao Y; Li B; Qiao H; Ai D; Lou G; Zhang M; Jiang Y; Bi Z; Ma L; Xu X Sci Rep; 2018 May; 8(1):8022. PubMed ID: 29789631 [TBL] [Abstract][Full Text] [Related]
17. Comparison of two independent Sr optical clocks with 1×10(-17) stability at 10(3) s. Nicholson TL; Martin MJ; Williams JR; Bloom BJ; Bishof M; Swallows MD; Campbell SL; Ye J Phys Rev Lett; 2012 Dec; 109(23):230801. PubMed ID: 23368177 [TBL] [Abstract][Full Text] [Related]
18. Compact magneto-optical trap of thulium atoms for a transportable optical clock. Golovizin A; Tregubov D; Mishin D; Provorchenko D; Kolachevsky N Opt Express; 2021 Oct; 29(22):36734-36744. PubMed ID: 34809077 [TBL] [Abstract][Full Text] [Related]