These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 22681385)

  • 1. Characterization of tyrosine sulphation in rFVIII (turoctocog alfa) expressed in CHO and HEK-293 cells.
    Nielsen PF; Bak S; Vandahl B
    Haemophilia; 2012 Sep; 18(5):e397-8. PubMed ID: 22681385
    [No Abstract]   [Full Text] [Related]  

  • 2. Physicochemical characterisation of rVIII-SingleChain, a novel recombinant single-chain factor VIII.
    Schmidbauer S; Witzel R; Robbel L; Sebastian P; Grammel N; Metzner HJ; Schulte S
    Thromb Res; 2015 Aug; 136(2):388-95. PubMed ID: 26037285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Turoctocog alfa (NovoEight®)--from design to clinical proof of concept.
    Ezban M; Vad K; Kjalke M
    Eur J Haematol; 2014 Nov; 93(5):369-76. PubMed ID: 24797664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterisation of the post-translational modifications of a novel, human cell line-derived recombinant human factor VIII.
    Kannicht C; Ramström M; Kohla G; Tiemeyer M; Casademunt E; Walter O; Sandberg H
    Thromb Res; 2013 Jan; 131(1):78-88. PubMed ID: 23058466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid residues 721-729 are required for full factor VIII activity.
    Kjalke M; Heding A; Talbo G; Persson E; Thomsen J; Ezban M
    Eur J Biochem; 1995 Dec; 234(3):773-9. PubMed ID: 8575434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and functional importance of tyrosine sulfate residues within recombinant factor VIII.
    Pittman DD; Wang JH; Kaufman RJ
    Biochemistry; 1992 Apr; 31(13):3315-25. PubMed ID: 1554716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular design and downstream processing of turoctocog alfa (NovoEight), a B-domain truncated factor VIII molecule.
    Ahmadian H; Hansen EB; Faber JH; Sejergaard L; Karlsson J; Bolt G; Hansen JJ; Thim L
    Blood Coagul Fibrinolysis; 2016 Jul; 27(5):568-75. PubMed ID: 26761578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimisation of the Factor VIII yield in mammalian cell cultures by reducing the membrane bound fraction.
    Kolind MP; Nørby PL; Berchtold MW; Johnsen LB
    J Biotechnol; 2011 Feb; 151(4):357-62. PubMed ID: 21219947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell type-specific and site directed N-glycosylation pattern of FcγRIIIa.
    Zeck A; Pohlentz G; Schlothauer T; Peter-Katalinić J; Regula JT
    J Proteome Res; 2011 Jul; 10(7):3031-9. PubMed ID: 21561106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification of recombinant human B-domain-deleted factor VIII using anti-factor VIII monoclonal antibody selected by the surface plasmon resonance biosensor.
    Oh HK; Lee JM; Byun TH; Park SY; Kim YH
    Biotechnol Prog; 2001; 17(6):1119-27. PubMed ID: 11735450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a plasma- and albumin-free recombinant von Willebrand factor.
    Turecek PL; Mitterer A; Matthiessen HP; Gritsch H; Varadi K; Siekmann J; Schnecker K; Plaimauer B; Kaliwoda M; Purtscher M; Woehrer W; Mundt W; Muchitsch EM; Suiter T; Ewenstein B; Ehrlich HJ; Schwarz HP
    Hamostaseologie; 2009 Oct; 29 Suppl 1():S32-8. PubMed ID: 19763356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneity in the tyrosine sulfation of Chinese hamster ovary cell produced recombinant FVIII.
    Mikkelsen J; Thomsen J; Ezban M
    Biochemistry; 1991 Feb; 30(6):1533-7. PubMed ID: 1899619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural analysis of the recombinant therapeutic product rFVIII and its PEGylated variants using 2-D DIGE.
    Monetti C; Rottensteiner H; Gritsch H; Weber A; Scheiflinger F; Turecek PL
    Electrophoresis; 2011 Jun; 32(11):1292-301. PubMed ID: 21520149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perspectives on progressive strategies and recent trends in the production of recombinant human factor VIII.
    Mannully ST; L N R; Pulicherla KK
    Int J Biol Macromol; 2018 Nov; 119():496-504. PubMed ID: 30063930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the virus clearance capacity and robustness of the manufacturing process for the recombinant factor VIII protein, turoctocog alfa.
    Ellgaard TW; Bindslev L; Kamstrup S
    Protein Expr Purif; 2017 Jan; 129():94-100. PubMed ID: 27620499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Innovative approach for improved rFVIII concentrate.
    Morfini M
    Eur J Haematol; 2014 Nov; 93(5):361-8. PubMed ID: 24766411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low risk of inhibitor formation in haemophilia patients after a change in treatment from Chinese hamster ovary cell-produced to baby hamster kidney cell-produced recombinant factor VIII.
    Singleton E; Smith J; Kavanagh M; Nolan B; White B
    Thromb Haemost; 2007 Dec; 98(6):1188-92. PubMed ID: 18064312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane-binding peptide from the C2 domain of factor VIII forms an amphipathic structure as determined by NMR spectroscopy.
    Gilbert GE; Baleja JD
    Biochemistry; 1995 Mar; 34(9):3022-31. PubMed ID: 7893714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disulfide structure of the heparin binding domain in vascular endothelial growth factor: characterization of posttranslational modifications in VEGF.
    Keck RG; Berleau L; Harris R; Keyt BA
    Arch Biochem Biophys; 1997 Aug; 344(1):103-13. PubMed ID: 9244387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative analysis of heterogeneity in commercially available recombinant factor VIII products.
    Baunsgaard D; Nielsen AD; Nielsen PF; Henriksen A; Kristensen AK; Bagger HW; Ezban M
    Haemophilia; 2018 Nov; 24(6):880-887. PubMed ID: 29726070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.