These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 22681539)

  • 1. Anomalous pseudocapacitive behavior of a nanostructured, mixed-valent manganese oxide film for electrical energy storage.
    Song MK; Cheng S; Chen H; Qin W; Nam KW; Xu S; Yang XQ; Bongiorno A; Lee J; Bai J; Tyson TA; Cho J; Liu M
    Nano Lett; 2012 Jul; 12(7):3483-90. PubMed ID: 22681539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid-State Thin-Film Supercapacitors with Ultrafast Charge/Discharge Based on N-Doped-Carbon-Tubes/Au-Nanoparticles-Doped-MnO2 Nanocomposites.
    Lv Q; Wang S; Sun H; Luo J; Xiao J; Xiao J; Xiao F; Wang S
    Nano Lett; 2016 Jan; 16(1):40-7. PubMed ID: 26599168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrahigh-Power Pseudocapacitors Based on Ordered Porous Heterostructures of Electron-Correlated Oxides.
    Lang XY; Liu BT; Shi XM; Li YQ; Wen Z; Jiang Q
    Adv Sci (Weinh); 2016 May; 3(5):1500319. PubMed ID: 27812465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Over-Reduction-Controlled Mixed-Valent Manganese Oxide with Tunable Mn
    Fang Z; Xu M; Li Q; Qi M; Xu T; Niu Z; Qu N; Gu J; Wang J; Wang D
    Langmuir; 2021 Mar; 37(8):2816-2825. PubMed ID: 33591771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic-level structure engineering of metal oxides for high-rate oxygen intercalation pseudocapacitance.
    Ling T; Da P; Zheng X; Ge B; Hu Z; Wu M; Du XW; Hu WB; Jaroniec M; Qiao SZ
    Sci Adv; 2018 Oct; 4(10):eaau6261. PubMed ID: 30345366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational Design of Porous Structured Nickel Manganese Sulfides Hexagonal Sheets-in-Cage Structures as an Advanced Electrode Material for High-Performance Electrochemical Capacitors.
    Khalafallah D; Wu Z; Zhi M; Hong Z
    Chemistry; 2020 Feb; 26(10):2251-2262. PubMed ID: 31769082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudocapacitive mechanism of manganese oxide in 1-ethyl-3-methylimidazolium thiocyanate ionic liquid electrolyte studied using X-ray photoelectron spectroscopy.
    Chang JK; Lee MT; Tsai WT; Deng MJ; Cheng HF; Sun IW
    Langmuir; 2009 Oct; 25(19):11955-60. PubMed ID: 19621902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Dimensional Materials for High-Energy Solid-State Asymmetric Pseudocapacitors with High Mass Loadings.
    Chodankar NR; Patil SJ; Rama Raju GS; Lee DW; Dubal DP; Huh YS; Han YK
    ChemSusChem; 2020 Mar; 13(6):1582-1592. PubMed ID: 31654465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrodeposition of manganese and molybdenum mixed oxide thin films and their charge storage properties.
    Nakayama M; Tanaka A; Sato Y; Tonosaki T; Ogura K
    Langmuir; 2005 Jun; 21(13):5907-13. PubMed ID: 15952841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic Spray Deposition-Based Manganese Oxide Films-From Pseudocapacitive Charge Storage Materials to Three-Dimensional Microelectrode Integrands.
    Agrawal R; Adelowo E; Baboukani AR; Villegas MF; Henriques A; Wang C
    Nanomaterials (Basel); 2017 Jul; 7(8):. PubMed ID: 28933755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesoporous LixMn2O4 Thin Film Cathodes for Lithium-Ion Pseudocapacitors.
    Lesel BK; Ko JS; Dunn B; Tolbert SH
    ACS Nano; 2016 Aug; 10(8):7572-81. PubMed ID: 27472531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic effect of hierarchical nanostructured MoO2/Co(OH)2 with largely enhanced pseudocapacitor cyclability.
    Hercule KM; Wei Q; Khan AM; Zhao Y; Tian X; Mai L
    Nano Lett; 2013; 13(11):5685-91. PubMed ID: 24147641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile Synthesis of Mixed Metal-Organic Frameworks: Electrode Materials for Supercapacitors with Excellent Areal Capacitance and Operational Stability.
    Kazemi SH; Hosseinzadeh B; Kazemi H; Kiani MA; Hajati S
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23063-23073. PubMed ID: 29882650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation into Pseudo-Capacitance Behavior of Glycoside-Containing Hydrogels.
    Raravikar N; Dobos A; Narayanan E; Grandhi TS; Mishra S; Rege K; Goryll M
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3554-3561. PubMed ID: 28067487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanostructured (Co, Ni)-based compounds coated on a highly conductive three dimensional hollow carbon nanorod array (HCNA) scaffold for high performance pseudocapacitors.
    Wan L; Xiao J; Xiao F; Wang S
    ACS Appl Mater Interfaces; 2014 May; 6(10):7735-42. PubMed ID: 24755163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mixed-valent MnSiO
    Li B; Zhang X; Hu C; Dou J; Xia G; Zhang P; Zheng Z; Pan Y; Yu H; Chen C
    J Colloid Interface Sci; 2019 Nov; 556():239-248. PubMed ID: 31446337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional nanotube electrode arrays for hierarchical tubular structured high-performance pseudocapacitors.
    Gao Y; Lin Y; Chen J; Lin Q; Wu Y; Su W; Wang W; Fan Z
    Nanoscale; 2016 Jul; 8(27):13280-7. PubMed ID: 27337295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.