These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 22681546)

  • 1. Clusters and lattices of particles stabilized by dipolar coupling.
    Baskin A; Lo WY; Král P
    ACS Nano; 2012 Jul; 6(7):6083-90. PubMed ID: 22681546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals.
    Lalatonne Y; Richardi J; Pileni MP
    Nat Mater; 2004 Feb; 3(2):121-5. PubMed ID: 14730356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural diversity in binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Kotov NA; O'Brien S; Murray CB
    Nature; 2006 Jan; 439(7072):55-9. PubMed ID: 16397494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly of nanocube super-structures directed by surface and magnetic interactions.
    Stanković I; Lizardi L; García C
    Nanoscale; 2020 Oct; 12(37):19390-19403. PubMed ID: 32945830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer simulations of nucleation of nanoparticle superclusters from solution.
    Khan SJ; Sorensen CM; Chakrabarti A
    Langmuir; 2012 Apr; 28(13):5570-9. PubMed ID: 22385301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micromagnetic simulations of interacting dipoles on an fcc lattice: application to nanoparticle assemblies.
    Plumer ML; van Lierop J; Southern BW; Whitehead JP
    J Phys Condens Matter; 2010 Jul; 22(29):296007. PubMed ID: 21399324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly in binary mixtures of dipolar colloids: molecular dynamics simulations.
    Goyal A; Hall CK; Velev OD
    J Chem Phys; 2010 Aug; 133(6):064511. PubMed ID: 20707579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An analytical expression for the van der Waals interaction in oriented-attachment growth: a spherical nanoparticle and a growing cylindrical nanorod.
    He W; Lin J; Wang B; Tuo S; Pantelides ST; Dickerson JH
    Phys Chem Chem Phys; 2012 Apr; 14(13):4548-53. PubMed ID: 22361953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sedimentation equilibria of ferrofluids: II. Experimental osmotic equations of state of magnetite colloids.
    Luigjes B; Thies-Weesie DM; Erné BH; Philipse AP
    J Phys Condens Matter; 2012 Jun; 24(24):245104. PubMed ID: 22617544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of highly ordered nanostructures by drying micrometer colloidal droplets.
    Lee SY; Gradon L; Janeczko S; Iskandar F; Okuyama K
    ACS Nano; 2010 Aug; 4(8):4717-24. PubMed ID: 20731450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel gas-stabilized iron clusters: synthesis, structure and magnetic behaviour.
    Crisan O; von Haeften K; Ellis AM; Binns C
    Nanotechnology; 2008 Dec; 19(50):505602. PubMed ID: 19942774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the nature of metallic nanoparticles obtained from molecular Co3Ru-carbonyl clusters in mesoporous silica matrices.
    Schweyer-Tihay F; Estournès C; Braunstein P; Guille J; Paillaud JL; Richard-Plouet M; Rosé J
    Phys Chem Chem Phys; 2006 Sep; 8(34):4018-28. PubMed ID: 17028692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dipolar driven spontaneous self assembly of superparamagnetic Co nanoparticles into micrometric rice-grain like structures.
    Varón M; Peña L; Balcells L; Skumryev V; Martinez B; Puntes V
    Langmuir; 2010 Jan; 26(1):109-16. PubMed ID: 20038165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational study of the self-organization of bidisperse nanoparticles.
    Rabideau BD; Bonnecaze RT
    Langmuir; 2004 Oct; 20(21):9408-14. PubMed ID: 15461537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes.
    Zou S; Janel N; Schatz GC
    J Chem Phys; 2004 Jun; 120(23):10871-5. PubMed ID: 15268116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of organic ligands, electrostatic and magnetic interactions in formation of colloidal and interfacial inorganic nanostructures.
    Khomutov GB; Koksharov YA
    Adv Colloid Interface Sci; 2006 Sep; 122(1-3):119-47. PubMed ID: 16887093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the magnetic properties of metastable hexagonal close-packed Ni nanoparticles with those of the stable face-centered cubic Ni nanoparticles.
    Jeon YT; Moon JY; Lee GH; Park J; Chang Y
    J Phys Chem B; 2006 Jan; 110(3):1187-91. PubMed ID: 16471662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Haloing, flocculation, and bridging in colloid-nanoparticle suspensions.
    Scheer EN; Schweizer KS
    J Chem Phys; 2008 Apr; 128(16):164905. PubMed ID: 18447498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A metastable van der waals gel: transitioning from weak to strong attractions.
    Kramb RC; Zukoski CF
    Langmuir; 2008 Jul; 24(14):7565-72. PubMed ID: 18558779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold nanoparticle assemblies stabilized by bis(phthalocyaninato)lanthanide(III) complexes through van der Waals interactions.
    Noda Y; Noro S; Akutagawa T; Nakamura T
    Sci Rep; 2014 Jan; 4():3758. PubMed ID: 24441566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.