These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 2268158)

  • 1. Regulation of protease production in Clostridium sporogenes.
    Allison C; Macfarlane GT
    Appl Environ Microbiol; 1990 Nov; 56(11):3485-90. PubMed ID: 2268158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological and nutritional factors affecting synthesis of extracellular metalloproteases by Clostridium bifermentans NCTC 2914.
    Macfarlane GT; Macfarlane S
    Appl Environ Microbiol; 1992 Apr; 58(4):1195-1200. PubMed ID: 1599239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production and regulation of a thermostable protease by Pseudomonas sp. B45.
    Chakraborty R; Srinivasan M
    Acta Microbiol Hung; 1992; 39(2):181-91. PubMed ID: 1307442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of extracellular alkaline protease activity by histidine in a collagenolytic Vibrio alginolyticus strain.
    Long S; Mothibeli MA; Robb FT; Woods DR
    J Gen Microbiol; 1981 Nov; 127(1):193-9. PubMed ID: 6279766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of environmental conditions on the production of two extracellular proteolytic enzymes by Vibrio SA1.
    Wiersma M; Hansen TA; Harder W
    Antonie Van Leeuwenhoek; 1978; 44(2):129-40. PubMed ID: 582092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of fermentation products and extracellular protease during anaerobic growth of Bacillus licheniformis in chemostat and batch-culture.
    Bulthuis BA; Rommens C; Koningstein GM; Stouthamer AH; van Verseveld HW
    Antonie Van Leeuwenhoek; 1991; 60(3-4):355-71. PubMed ID: 1807202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The physiology of Clostridium sporogenes NCIB 8053 growing in defined media.
    Lovitt RW; Kell DB; Morris JG
    J Appl Bacteriol; 1987 Jan; 62(1):81-92. PubMed ID: 3571035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic analysis of Clostridium cellulolyticum carbohydrate metabolism: importance of glucose 1-phosphate and glucose 6-phosphate branch points for distribution of carbon fluxes inside and outside cells as revealed by steady-state continuous culture.
    Guedon E; Desvaux M; Petitdemange H
    J Bacteriol; 2000 Apr; 182(7):2010-7. PubMed ID: 10715010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ability of acidic pH, growth inhibitors, and glucose to increase the proton motive force and energy spilling of amino acid-fermenting Clostridium sporogenes MD1 cultures.
    Flythe MD; Russell JB
    Arch Microbiol; 2005 May; 183(4):236-42. PubMed ID: 15891933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of growth conditions on glycine reductase of Clostridium sporogenes.
    Venugopalan V
    J Bacteriol; 1980 Jan; 141(1):386-8. PubMed ID: 7354004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of cyclic AMP on catabolite repressed bacterial sporogenesis of an anaerobe.
    Emeruwa AC; Hawirko RZ
    Arch Microbiol; 1975 Sep; 105(1):67-71. PubMed ID: 242295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of biodegradative threonine deaminase synthesis in Escherichia coli by cyclic adenosine 3',5'-monophosphate.
    Shizuta Y; Hayaishi O
    J Biol Chem; 1970 Oct; 245(20):5416-23. PubMed ID: 4319241
    [No Abstract]   [Full Text] [Related]  

  • 13. Regulation and genetic enhancement of beta-amylase production in Clostridium thermosulfurogenes.
    Hyun HH; Zeikus JG
    J Bacteriol; 1985 Dec; 164(3):1162-70. PubMed ID: 2415505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A continuous culture study of the regulation of extracellular protease production in Vibrio SA1.
    Wiersma M; Harder W
    Antonie Van Leeuwenhoek; 1978; 44(2):141-55. PubMed ID: 582093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Synthetic medium for culturing Clostridium sporogenes].
    Belokopytov BF; Golovchenko NP; Krauzova VI; Chuvil'skaia NA; Akimenko VK
    Mikrobiologiia; 1982; 51(2):354-60. PubMed ID: 7087816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of pH and a bacteriocin (bovicin HC5) on Clostridium sporogenes MD1, a bacterium that has the ability to degrade amino acids in ensiled plant materials.
    Flythe MD; Russell JB
    FEMS Microbiol Ecol; 2004 Feb; 47(2):215-22. PubMed ID: 19712336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Glucose metabolism in Clostridium sporogenes and Clostridium sticklandii bacteria].
    Golovchenko NP; Belokopytov BF; Akimenko VK
    Mikrobiologiia; 1983; 52(6):869-74. PubMed ID: 6230511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the arginine dihydrolase pathway in Clostridium sporogenes.
    Venugopal V; Nadkarni GB
    J Bacteriol; 1977 Aug; 131(2):693-5. PubMed ID: 195930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isoleucine synthesis by Clostridium sporogenes from propionate or alpha-methylbutyrate.
    Monticello DJ; Hadioetomo RS; Costilow RN
    J Gen Microbiol; 1984 Feb; 130(2):309-18. PubMed ID: 6726176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The growth and nutrition of Clostridium sporogenes NCIB 8053 in defined media.
    Lovitt RW; Morris JG; Kell DB
    J Appl Bacteriol; 1987 Jan; 62(1):71-80. PubMed ID: 3571034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.