These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 22681653)

  • 41. Pilot Study of a Powered Exoskeleton for Upper Limb Rehabilitation Based on the Wheelchair.
    Meng Q; Xie Q; Shao H; Cao W; Wang F; Wang L; Yu H; Li S
    Biomed Res Int; 2019; 2019():9627438. PubMed ID: 31976331
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of training using an upper limb rehabilitation robot (HEXO-UR30A) in chronic stroke patients: A randomized controlled trial.
    Kim JA; Chun MH; Lee A; Ji Y; Jang H; Han C
    Medicine (Baltimore); 2023 Mar; 102(12):e33246. PubMed ID: 36961152
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Clinical validation of kinematic assessments of post-stroke upper limb movements with a multi-joint arm exoskeleton.
    Grimm F; Kraugmann J; Naros G; Gharabaghi A
    J Neuroeng Rehabil; 2021 Jun; 18(1):92. PubMed ID: 34078400
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Robotic-assisted therapy with bilateral practice improves task and motor performance in the upper extremities of chronic stroke patients: A randomised controlled trial.
    Hsu HY; Chiu HY; Kuan TS; Tsai CL; Su FC; Kuo LC
    Aust Occup Ther J; 2019 Oct; 66(5):637-647. PubMed ID: 31317553
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evolution of upper limb kinematics four years after subacute robot-assisted rehabilitation in stroke patients.
    Pila O; Duret C; Gracies JM; Francisco GE; Bayle N; Hutin É
    Int J Neurosci; 2018 Nov; 128(11):1030-1039. PubMed ID: 29619890
    [No Abstract]   [Full Text] [Related]  

  • 46. Home-based self-help telerehabilitation of the upper limb assisted by an electromyography-driven wrist/hand exoneuromusculoskeleton after stroke.
    Nam C; Zhang B; Chow T; Ye F; Huang Y; Guo Z; Li W; Rong W; Hu X; Poon W
    J Neuroeng Rehabil; 2021 Sep; 18(1):137. PubMed ID: 34526058
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Variation of muscle coactivation patterns in chronic stroke during robot-assisted elbow training.
    Hu X; Tong KY; Song R; Tsang VS; Leung PO; Li L
    Arch Phys Med Rehabil; 2007 Aug; 88(8):1022-9. PubMed ID: 17678665
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke.
    Hu XL; Tong KY; Song R; Zheng XJ; Leung WW
    Neurorehabil Neural Repair; 2009 Oct; 23(8):837-46. PubMed ID: 19531605
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The responsiveness and correlation between Fugl-Meyer Assessment, Motor Status Scale, and the Action Research Arm Test in chronic stroke with upper-extremity rehabilitation robotic training.
    Wei XJ; Tong KY; Hu XL
    Int J Rehabil Res; 2011 Dec; 34(4):349-56. PubMed ID: 22044987
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Robotic techniques for upper limb evaluation and rehabilitation of stroke patients.
    Colombo R; Pisano F; Micera S; Mazzone A; Delconte C; Carrozza MC; Dario P; Minuco G
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):311-24. PubMed ID: 16200755
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinematic measures for upper limb motor assessment during robot-mediated training in patients with severe sub-acute stroke.
    Duret C; Courtial O; Grosmaire AG
    Restor Neurol Neurosci; 2016; 34(2):237-45. PubMed ID: 26890098
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Resistive versus active assisted robotic training for the upper limb after a stroke: A randomized controlled study.
    Jeon SY; Ki M; Shin JH
    Ann Phys Rehabil Med; 2024 Feb; 67(1):101789. PubMed ID: 38118340
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients.
    Daly JJ; Ruff RL
    ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Predictors of activities of daily living outcomes after upper limb robot-assisted therapy in subacute stroke patients.
    Franceschini M; Goffredo M; Pournajaf S; Paravati S; Agosti M; De Pisi F; Galafate D; Posteraro F
    PLoS One; 2018; 13(2):e0193235. PubMed ID: 29466440
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Robot-aided therapy on the upper limb of subacute and chronic stroke patients: a biomechanical approach.
    Mazzoleni S; Filippi M; Carrozza MC; Posteraro F; Puzzolante L; Falchi E
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975422. PubMed ID: 22275623
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Constraining upper limb synergies of hemiparetic patients using a robotic exoskeleton in the perspective of neuro-rehabilitation.
    Crocher V; Sahbani A; Robertson J; Roby-Brami A; Morel G
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):247-57. PubMed ID: 22481836
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Self-Paced Reaching after Stroke: A Quantitative Assessment of Longitudinal and Directional Sensitivity Using the H-Man Planar Robot for Upper Limb Neurorehabilitation.
    Hussain A; Budhota A; Hughes CM; Dailey WD; Vishwanath DA; Kuah CW; Yam LH; Loh YJ; Xiang L; Chua KS; Burdet E; Campolo D
    Front Neurosci; 2016; 10():477. PubMed ID: 27826223
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Does assist-as-needed upper limb robotic therapy promote participation in repetitive activity-based motor training in sub-acute stroke patients with severe paresis?
    Grosmaire AG; Duret C
    NeuroRehabilitation; 2017; 41(1):31-39. PubMed ID: 28527224
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ability of electrical stimulation therapy to improve the effectiveness of robotic training for paretic upper limbs in patients with stroke.
    Miyasaka H; Orand A; Ohnishi H; Tanino G; Takeda K; Sonoda S
    Med Eng Phys; 2016 Nov; 38(11):1172-1175. PubMed ID: 27531071
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Adaptive hybrid robotic system for rehabilitation of reaching movement after a brain injury: a usability study.
    Resquín F; Gonzalez-Vargas J; Ibáñez J; Brunetti F; Dimbwadyo I; Carrasco L; Alves S; Gonzalez-Alted C; Gomez-Blanco A; Pons JL
    J Neuroeng Rehabil; 2017 Oct; 14(1):104. PubMed ID: 29025427
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.