These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 22681699)

  • 1. Dissolution kinetics and mechanisms at dolomite-water interfaces: effects of electrolyte specific ionic strength.
    Xu M; Sullivan K; Vanness G; Knauss KG; Higgins SR
    Environ Sci Technol; 2013 Jan; 47(1):110-8. PubMed ID: 22681699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retention of neodymium by dolomite at variable ionic strength as probed by batch and column experiments.
    Emerson HP; Zengotita F; Richmann M; Katsenovich Y; Reed DT; Dittrich TM
    J Environ Radioact; 2018 Oct; 190-191():89-96. PubMed ID: 29775842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic Simulation of Carbonate Cements-Water-Carbon Dioxide Equilibrium in Sandstone for Prediction of Precipitation/Dissolution of Carbonate Cements.
    Duan Y; Feng M; Zhong X; Shang R; Huang L
    PLoS One; 2016; 11(12):e0167035. PubMed ID: 27907043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responsive polyelectrolyte multilayers assembled at high ionic strength with an unusual collapse at low ionic strength.
    Irigoyen J; Han L; Llarena I; Mao Z; Gao C; Moya SE
    Macromol Rapid Commun; 2012 Nov; 33(22):1964-9. PubMed ID: 22933191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of carboxymethyl cellulose and ionic strength on stability of mineral suspensions in potash ore flotation systems.
    Pawlik M; Laskowski JS; Ansari A
    J Colloid Interface Sci; 2003 Apr; 260(2):251-8. PubMed ID: 12686172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissolution and Precipitation Dynamics at Environmental Mineral Interfaces Imaged by In Situ Atomic Force Microscopy.
    Wang L; Putnis CV
    Acc Chem Res; 2020 Jun; 53(6):1196-1205. PubMed ID: 32441501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forsterite dissolution in saline water at elevated temperature and high CO2 pressure.
    Wang F; Giammar DE
    Environ Sci Technol; 2013 Jan; 47(1):168-73. PubMed ID: 22650147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of Cu2+ and Pb2+ ion on dolomite powder.
    Pehlivan E; Ozkan AM; Dinç S; Parlayici S
    J Hazard Mater; 2009 Aug; 167(1-3):1044-9. PubMed ID: 19237240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic modeling of liquid-phase adsorption of phosphate on dolomite.
    Karaca S; Gürses A; Ejder M; Açikyildiz M
    J Colloid Interface Sci; 2004 Sep; 277(2):257-63. PubMed ID: 15341833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaporite caprock integrity: an experimental study of reactive mineralogy and pore-scale heterogeneity during brine-CO2 exposure.
    Smith MM; Sholokhova Y; Hao Y; Carroll SA
    Environ Sci Technol; 2013 Jan; 47(1):262-8. PubMed ID: 22831758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colloid transport in dolomite rock fractures: effects of fracture characteristics, specific discharge, and ionic strength.
    Mondal PK; Sleep BE
    Environ Sci Technol; 2012 Sep; 46(18):9987-94. PubMed ID: 22891695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorptive removal of phosphate from aqueous solutions using raw and calcinated dolomite.
    Karaca S; Gürses A; Ejder M; Açikyildiz M
    J Hazard Mater; 2006 Feb; 128(2-3):273-9. PubMed ID: 16202518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental observation of permeability changes in dolomite at CO2 sequestration conditions.
    Tutolo BM; Luhmann AJ; Kong XZ; Saar MO; Seyfried WE
    Environ Sci Technol; 2014 Feb; 48(4):2445-52. PubMed ID: 24456494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of adsorption of aqueous arsenite and arsenate onto charred dolomite in microcolumn systems.
    Salameh Y; Al-Muhtaseb AH; Mousa H; Walker GM; Ahmad MN
    Environ Technol; 2014; 35(21-24):3029-40. PubMed ID: 25244130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na+, Ca2+, and Mg2+ in brines affect supercritical CO2-brine-biotite interactions: ion exchange, biotite dissolution, and illite precipitation.
    Hu Y; Ray JR; Jun YS
    Environ Sci Technol; 2013 Jan; 47(1):191-7. PubMed ID: 22607371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the biologically produced polymer alginic acid on macroscopic and microscopic calcite dissolution rates.
    Perry TD; Duckworth OW; McNamara CJ; Martin ST; Mitchell R
    Environ Sci Technol; 2004 Jun; 38(11):3040-6. PubMed ID: 15224733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface chemistry allows for abiotic precipitation of dolomite at low temperature.
    Roberts JA; Kenward PA; Fowle DA; Goldstein RH; González LA; Moore DS
    Proc Natl Acad Sci U S A; 2013 Sep; 110(36):14540-5. PubMed ID: 23964124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speciation of phytate ion in aqueous solution. Sequestration of magnesium and calcium by phytate at different temperatures and ionic strengths, in NaCl(aq).
    Crea P; de Robertis A; de Stefano C; Sammartano S
    Biophys Chem; 2006 Oct; 124(1):18-26. PubMed ID: 16766113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ spectrophotometric determination of pH under geologic CO2 sequestration conditions: method development and application.
    Shao H; Thompson CJ; Qafoku O; Cantrell KJ
    Environ Sci Technol; 2013 Jan; 47(1):63-70. PubMed ID: 22708540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the interaction force between Cryptosporidium parvum oocysts and solid surfaces.
    Byrd TL; Walz JY
    Langmuir; 2007 Jul; 23(14):7475-83. PubMed ID: 17555335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.