These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 22681768)
1. PA from an H5N1 highly pathogenic avian influenza virus activates viral transcription and replication and induces apoptosis and interferon expression at an early stage of infection. Wang Q; Zhang S; Jiang H; Wang J; Weng L; Mao Y; Sekiguchi S; Yasui F; Kohara M; Buchy P; Deubel V; Xu K; Sun B; Toyoda T Virol J; 2012 Jun; 9():106. PubMed ID: 22681768 [TBL] [Abstract][Full Text] [Related]
2. The PA-gene-mediated lethal dissemination and excessive innate immune response contribute to the high virulence of H5N1 avian influenza virus in mice. Hu J; Hu Z; Song Q; Gu M; Liu X; Wang X; Hu S; Chen C; Liu H; Liu W; Chen S; Peng D; Liu X J Virol; 2013 Mar; 87(5):2660-72. PubMed ID: 23255810 [TBL] [Abstract][Full Text] [Related]
3. Virulence and genetic compatibility of polymerase reassortant viruses derived from the pandemic (H1N1) 2009 influenza virus and circulating influenza A viruses. Song MS; Pascua PN; Lee JH; Baek YH; Park KJ; Kwon HI; Park SJ; Kim CJ; Kim H; Webby RJ; Webster RG; Choi YK J Virol; 2011 Jul; 85(13):6275-86. PubMed ID: 21507962 [TBL] [Abstract][Full Text] [Related]
4. PA Mutations Inherited during Viral Evolution Act Cooperatively To Increase Replication of Contemporary H5N1 Influenza Virus with an Expanded Host Range. Arai Y; Kawashita N; Elgendy EM; Ibrahim MS; Daidoji T; Ono T; Takagi T; Nakaya T; Matsumoto K; Watanabe Y J Virol; 2020 Dec; 95(1):. PubMed ID: 33028722 [TBL] [Abstract][Full Text] [Related]
5. Amino acid changes in the influenza A virus PA protein that attenuate avian H5N1 viruses in mammals. Fan S; Hatta M; Kim JH; Le MQ; Neumann G; Kawaoka Y J Virol; 2014 Dec; 88(23):13737-46. PubMed ID: 25231317 [TBL] [Abstract][Full Text] [Related]
6. Host- and strain-specific regulation of influenza virus polymerase activity by interacting cellular proteins. Bortz E; Westera L; Maamary J; Steel J; Albrecht RA; Manicassamy B; Chase G; Martínez-Sobrido L; Schwemmle M; García-Sastre A mBio; 2011; 2(4):. PubMed ID: 21846828 [TBL] [Abstract][Full Text] [Related]
8. Caspase-1 deficient mice are more susceptible to influenza A virus infection with PA variation. Huang CH; Chen CJ; Yen CT; Yu CP; Huang PN; Kuo RL; Lin SJ; Chang CK; Shih SR J Infect Dis; 2013 Dec; 208(11):1898-905. PubMed ID: 23901080 [TBL] [Abstract][Full Text] [Related]
9. Replication and transcription activities of ribonucleoprotein complexes reconstituted from avian H5N1, H1N1pdm09 and H3N2 influenza A viruses. Ngai KL; Chan MC; Chan PK PLoS One; 2013; 8(6):e65038. PubMed ID: 23750226 [TBL] [Abstract][Full Text] [Related]
10. The PB2, PA, HA, NP, and NS genes of a highly pathogenic avian influenza virus A/whooper swan/Mongolia/3/2005 (H5N1) are responsible for pathogenicity in ducks. Kajihara M; Sakoda Y; Soda K; Minari K; Okamatsu M; Takada A; Kida H Virol J; 2013 Feb; 10():45. PubMed ID: 23374292 [TBL] [Abstract][Full Text] [Related]
11. Reassortment of NS segments modifies highly pathogenic avian influenza virus interaction with avian hosts and host cells. Petersen H; Wang Z; Lenz E; Pleschka S; Rautenschlein S J Virol; 2013 May; 87(10):5362-71. PubMed ID: 23468508 [TBL] [Abstract][Full Text] [Related]
12. PB2 protein of a highly pathogenic avian influenza virus strain A/chicken/Yamaguchi/7/2004 (H5N1) determines its replication potential in pigs. Manzoor R; Sakoda Y; Nomura N; Tsuda Y; Ozaki H; Okamatsu M; Kida H J Virol; 2009 Feb; 83(4):1572-8. PubMed ID: 19052090 [TBL] [Abstract][Full Text] [Related]
13. Glycine at Position 622 in PB1 Contributes to the Virulence of H5N1 Avian Influenza Virus in Mice. Feng X; Wang Z; Shi J; Deng G; Kong H; Tao S; Li C; Liu L; Guan Y; Chen H J Virol; 2016 Feb; 90(4):1872-9. PubMed ID: 26656683 [TBL] [Abstract][Full Text] [Related]
15. Mutations in the PA Protein of Avian H5N1 Influenza Viruses Affect Polymerase Activity and Mouse Virulence. Zhong G; Le MQ; Lopes TJS; Halfmann P; Hatta M; Fan S; Neumann G; Kawaoka Y J Virol; 2018 Feb; 92(4):. PubMed ID: 29212927 [TBL] [Abstract][Full Text] [Related]
16. Reassortment between avian H5N1 and human H3N2 influenza viruses creates hybrid viruses with substantial virulence. Li C; Hatta M; Nidom CA; Muramoto Y; Watanabe S; Neumann G; Kawaoka Y Proc Natl Acad Sci U S A; 2010 Mar; 107(10):4687-92. PubMed ID: 20176961 [TBL] [Abstract][Full Text] [Related]
17. The NS segment of an H5N1 highly pathogenic avian influenza virus (HPAIV) is sufficient to alter replication efficiency, cell tropism, and host range of an H7N1 HPAIV. Ma W; Brenner D; Wang Z; Dauber B; Ehrhardt C; Högner K; Herold S; Ludwig S; Wolff T; Yu K; Richt JA; Planz O; Pleschka S J Virol; 2010 Feb; 84(4):2122-33. PubMed ID: 20007264 [TBL] [Abstract][Full Text] [Related]
18. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Imai M; Watanabe T; Hatta M; Das SC; Ozawa M; Shinya K; Zhong G; Hanson A; Katsura H; Watanabe S; Li C; Kawakami E; Yamada S; Kiso M; Suzuki Y; Maher EA; Neumann G; Kawaoka Y Nature; 2012 May; 486(7403):420-8. PubMed ID: 22722205 [TBL] [Abstract][Full Text] [Related]
19. The contribution of PA-X to the virulence of pandemic 2009 H1N1 and highly pathogenic H5N1 avian influenza viruses. Gao H; Sun Y; Hu J; Qi L; Wang J; Xiong X; Wang Y; He Q; Lin Y; Kong W; Seng LG; Sun H; Pu J; Chang KC; Liu X; Liu J Sci Rep; 2015 Feb; 5():8262. PubMed ID: 25652161 [TBL] [Abstract][Full Text] [Related]
20. PA-X decreases the pathogenicity of highly pathogenic H5N1 influenza A virus in avian species by inhibiting virus replication and host response. Hu J; Mo Y; Wang X; Gu M; Hu Z; Zhong L; Wu Q; Hao X; Hu S; Liu W; Liu H; Liu X; Liu X J Virol; 2015 Apr; 89(8):4126-42. PubMed ID: 25631083 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]