BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22681886)

  • 1. Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of peroxiredoxin III in mitochondria.
    Kil IS; Lee SK; Ryu KW; Woo HA; Hu MC; Bae SH; Rhee SG
    Mol Cell; 2012 Jun; 46(5):584-94. PubMed ID: 22681886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the signaling function of sulfiredoxin and peroxiredoxin III in isolated adrenal gland: unsuitability of clonal and primary adrenocortical cells.
    Kil IS; Bae SH; Rhee SG
    Methods Enzymol; 2013; 527():169-81. PubMed ID: 23830631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial H
    Rhee SG; Kil IS
    Free Radic Biol Med; 2016 Nov; 100():73-80. PubMed ID: 28236420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circadian Oscillation of Sulfiredoxin in the Mitochondria.
    Kil IS; Ryu KW; Lee SK; Kim JY; Chu SY; Kim JH; Park S; Rhee SG
    Mol Cell; 2015 Aug; 59(4):651-63. PubMed ID: 26236015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial H
    Rhee SG; Kil IS
    Free Radic Biol Med; 2016 Oct; 99():120-127. PubMed ID: 27497909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfiredoxin Translocation into Mitochondria Plays a Crucial Role in Reducing Hyperoxidized Peroxiredoxin III.
    Noh YH; Baek JY; Jeong W; Rhee SG; Chang TS
    J Biol Chem; 2009 Mar; 284(13):8470-7. PubMed ID: 19176523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p53 drives necroptosis via downregulation of sulfiredoxin and peroxiredoxin 3.
    Rius-Pérez S; Pérez S; Toledano MB; Sastre J
    Redox Biol; 2022 Oct; 56():102423. PubMed ID: 36029648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Failure of adrenal corticosterone production in POMC-deficient mice results from lack of integrated effects of POMC peptides on multiple factors.
    Karpac J; Czyzewska K; Kern A; Brush RS; Anderson RE; Hochgeschwender U
    Am J Physiol Endocrinol Metab; 2008 Aug; 295(2):E446-55. PubMed ID: 18559987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular aspects of adrenal regulation for circadian glucocorticoid synthesis by chronic voluntary exercise.
    Otawa M; Arai H; Atomi Y
    Life Sci; 2007 Jan; 80(8):725-31. PubMed ID: 17222430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of sulfiredoxin as a regulator of peroxiredoxin function and regulation of its expression.
    Jeong W; Bae SH; Toledano MB; Rhee SG
    Free Radic Biol Med; 2012 Aug; 53(3):447-56. PubMed ID: 22634055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of sulfiredoxin via an Nrf2-dependent pathway and hyperoxidation of peroxiredoxin III in the lungs of mice exposed to hyperoxia.
    Bae SH; Woo HA; Sung SH; Lee HE; Lee SK; Kil IS; Rhee SG
    Antioxid Redox Signal; 2009 May; 11(5):937-48. PubMed ID: 19086807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of the p38 MAPK pathway by follicle-stimulating hormone regulates steroidogenesis in granulosa cells differentially.
    Yu FQ; Han CS; Yang W; Jin X; Hu ZY; Liu YX
    J Endocrinol; 2005 Jul; 186(1):85-96. PubMed ID: 16002539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein kinase Cμ mediates adenosine-stimulated steroidogenesis in primary rat adrenal cells.
    Chen YC; Chen Y; Huang SH; Wang SM
    FEBS Lett; 2010 Nov; 584(21):4442-8. PubMed ID: 20937274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perfluorododecanoic acid-induced steroidogenic inhibition is associated with steroidogenic acute regulatory protein and reactive oxygen species in cAMP-stimulated Leydig cells.
    Shi Z; Feng Y; Wang J; Zhang H; Ding L; Dai J
    Toxicol Sci; 2010 Apr; 114(2):285-94. PubMed ID: 20100736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling.
    Woo HA; Yim SH; Shin DH; Kang D; Yu DY; Rhee SG
    Cell; 2010 Feb; 140(4):517-28. PubMed ID: 20178744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Irreversible inactivation of glutathione peroxidase 1 and reversible inactivation of peroxiredoxin II by H2O2 in red blood cells.
    Cho CS; Lee S; Lee GT; Woo HA; Choi EJ; Rhee SG
    Antioxid Redox Signal; 2010 Jun; 12(11):1235-46. PubMed ID: 20070187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. cAMP-independent signaling regulates steroidogenesis in mouse Leydig cells in the absence of StAR phosphorylation.
    Manna PR; Chandrala SP; Jo Y; Stocco DM
    J Mol Endocrinol; 2006 Aug; 37(1):81-95. PubMed ID: 16901926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of microfilaments and intermediate filaments in adrenal steroidogenesis.
    Hall PF; Almahbobi G
    Microsc Res Tech; 1997 Mar; 36(6):463-79. PubMed ID: 9142693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peroxiredoxin III and sulfiredoxin together protect mice from pyrazole-induced oxidative liver injury.
    Bae SH; Sung SH; Lee HE; Kang HT; Lee SK; Oh SY; Woo HA; Kil IS; Rhee SG
    Antioxid Redox Signal; 2012 Nov; 17(10):1351-61. PubMed ID: 22490042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Keeping Oxidative Metabolism on Time: Mitochondria as an Autonomous Redox Pacemaker Animated by H2O2 and Peroxiredoxin.
    Toledano MB; Delaunay-Moisan A
    Mol Cell; 2015 Aug; 59(4):517-9. PubMed ID: 26295958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.