BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22681943)

  • 1. A new perimeter using the preferential looking response to assess peripheral visual fields in young and developmentally delayed children.
    Allen LE; Slater ME; Proffitt RV; Quarton E; Pelah A
    J AAPOS; 2012 Jun; 16(3):261-5. PubMed ID: 22681943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The accuracy of confrontation visual field test in comparison with automated perimetry.
    Johnson LN; Baloh FG
    J Natl Med Assoc; 1991 Oct; 83(10):895-8. PubMed ID: 1800764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Saccadic vector optokinetic perimetry in children with neurodisability or isolated visual pathway lesions: observational cohort study.
    Tailor V; Glaze S; Unwin H; Bowman R; Thompson G; Dahlmann-Noor A
    Br J Ophthalmol; 2016 Oct; 100(10):1427-32. PubMed ID: 26740608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical applicability of the Saccadic Vector Optokinetic Perimeter in children with and without visual impairment.
    Simkin SK; Misra SL; Kasture A; McGhee CN; Dai S
    Clin Exp Optom; 2019 Jan; 102(1):70-78. PubMed ID: 29938834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection and characterisation of visual field defects using Saccadic Vector Optokinetic Perimetry in children with brain tumours.
    Murray IC; Schmoll C; Perperidis A; Brash HM; McTrusty AD; Cameron LA; Wilkinson AG; Mulvihill AO; Fleck BW; Minns RA
    Eye (Lond); 2018 Oct; 32(10):1563-1573. PubMed ID: 29880917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of saccadic vector optokinetic perimetry: a method of automated static perimetry for children using eye tracking.
    Murray IC; Fleck BW; Brash HM; Macrae ME; Tan LL; Minns RA
    Ophthalmology; 2009 Oct; 116(10):2017-26. PubMed ID: 19560207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Confrontation visual field loss as a function of decibel sensitivity loss on automated static perimetry. Implications on the accuracy of confrontation visual field testing.
    Shahinfar S; Johnson LN; Madsen RW
    Ophthalmology; 1995 Jun; 102(6):872-7. PubMed ID: 7777293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility and outcome of automated kinetic perimetry in children.
    Wilscher S; Wabbels B; Lorenz B
    Graefes Arch Clin Exp Ophthalmol; 2010 Oct; 248(10):1493-500. PubMed ID: 20232076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perimetry in young and neurologically impaired children: the Behavioral Visual Field (BEFIE) Screening Test revisited.
    Koenraads Y; Braun KP; van der Linden DC; Imhof SM; Porro GL
    JAMA Ophthalmol; 2015 Mar; 133(3):319-25. PubMed ID: 25541916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of a portable head mounted perimetry system to assess bedside visual fields.
    Hollander DA; Volpe NJ; Moster ML; Liu GT; Balcer LJ; Judy KD; Galetta SL
    Br J Ophthalmol; 2000 Oct; 84(10):1185-90. PubMed ID: 11004108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of functional visual field loss by automated static perimetry.
    Frisén L
    Acta Ophthalmol; 2014 Dec; 92(8):805-9. PubMed ID: 24698019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A traffic perimetry test that adheres to the European visual field requirements for group 2 drivers.
    Jørstad ØK; Jonsdottir TE; Zysset S; Rowe FJ
    Acta Ophthalmol; 2021 Nov; 99(7):e1253-e1254. PubMed ID: 33421353
    [No Abstract]   [Full Text] [Related]  

  • 13. A novel paediatric game-based visual-fields assessor.
    Aslam TM; Rahman W; Henson D; Khaw PT
    Br J Ophthalmol; 2011 Jul; 95(7):921-4. PubMed ID: 21464037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effectiveness of testing visual fields by confrontation.
    Pandit RJ; Gales K; Griffiths PG
    Lancet; 2001 Oct; 358(9290):1339-40. PubMed ID: 11684217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of flicker rate on measured visual field extent in very young children.
    Delaney SM; Dobson V; Mohan KM; Harvey EM
    Optom Vis Sci; 2001 Nov; 78(11):846-52. PubMed ID: 11763259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uniocular and binocular fields of rotation measures: Octopus versus Goldmann.
    Rowe FJ; Hanif S
    Graefes Arch Clin Exp Ophthalmol; 2011 Jun; 249(6):909-19. PubMed ID: 21243371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional constriction of the ocular motor field: description and preliminary evaluation of a new technique to help distinguish organic from nonorganic visual field loss.
    Ali N
    J Neuroophthalmol; 2011 Jun; 31(2):131-4. PubMed ID: 21368668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oculokinetic perimetry for the assessment of visual fields.
    Clark BJ; Timms C; Franks WA
    Arch Dis Child; 1990 Apr; 65(4):432-4. PubMed ID: 2346336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of an automated confrontation testing device versus finger counting in the detection of field loss.
    Bass SJ; Cooper J; Feldman J; Horn D
    Optometry; 2007 Aug; 78(8):390-5. PubMed ID: 17662927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [First experience with the Heidelberg Edge Perimeter® on patients with ocular hypertension and preperimetric glaucoma].
    Hasler S; Stürmer J
    Klin Monbl Augenheilkd; 2012 Apr; 229(4):319-22. PubMed ID: 22495996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.