These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 22682218)

  • 1. Polarizing macrophages through reprogramming of glucose metabolism.
    Blagih J; Jones RG
    Cell Metab; 2012 Jun; 15(6):793-5. PubMed ID: 22682218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism.
    Haschemi A; Kosma P; Gille L; Evans CR; Burant CF; Starkl P; Knapp B; Haas R; Schmid JA; Jandl C; Amir S; Lubec G; Park J; Esterbauer H; Bilban M; Brizuela L; Pospisilik JA; Otterbein LE; Wagner O
    Cell Metab; 2012 Jun; 15(6):813-26. PubMed ID: 22682222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sedoheptulose kinase regulates cellular carbohydrate metabolism by sedoheptulose 7-phosphate supply.
    Nagy C; Haschemi A
    Biochem Soc Trans; 2013 Apr; 41(2):674-80. PubMed ID: 23514175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relevance of the MEK/ERK signaling pathway in the metabolism of activated macrophages: a metabolomic approach.
    Través PG; de Atauri P; Marín S; Pimentel-Santillana M; Rodríguez-Prados JC; Marín de Mas I; Selivanov VA; Martín-Sanz P; Boscá L; Cascante M
    J Immunol; 2012 Feb; 188(3):1402-10. PubMed ID: 22190182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose metabolism in mouse cumulus cells prevents oocyte aging by maintaining both energy supply and the intracellular redox potential.
    Li Q; Miao DQ; Zhou P; Wu YG; Gao D; Wei DL; Cui W; Tan JH
    Biol Reprod; 2011 Jun; 84(6):1111-8. PubMed ID: 21270427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sedoheptulokinase deficiency due to a 57-kb deletion in cystinosis patients causes urinary accumulation of sedoheptulose: elucidation of the CARKL gene.
    Wamelink MM; Struys EA; Jansen EE; Levtchenko EN; Zijlstra FS; Engelke U; Blom HJ; Jakobs C; Wevers RA
    Hum Mutat; 2008 Apr; 29(4):532-6. PubMed ID: 18186520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transaldolase deficiency influences the pentose phosphate pathway, mitochondrial homoeostasis and apoptosis signal processing.
    Qian Y; Banerjee S; Grossman CE; Amidon W; Nagy G; Barcza M; Niland B; Karp DR; Middleton FA; Banki K; Perl A
    Biochem J; 2008 Oct; 415(1):123-34. PubMed ID: 18498245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The significance of sedoheptulose 1,7-bisphosphate in the metabolism and regulation of the pentose pathway in liver.
    Williams JF; Blackmore PF; Arora KK
    Biochem Int; 1985 Oct; 11(4):599-610. PubMed ID: 4084320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NADPH oxidase activation by hyperglycaemia in cardiomyocytes is independent of glucose metabolism but requires SGLT1.
    Balteau M; Tajeddine N; de Meester C; Ginion A; Des Rosiers C; Brady NR; Sommereyns C; Horman S; Vanoverschelde JL; Gailly P; Hue L; Bertrand L; Beauloye C
    Cardiovasc Res; 2011 Nov; 92(2):237-46. PubMed ID: 21859816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pentose phosphate pathway is a metabolic redox sensor and regulates transcription during the antioxidant response.
    Krüger A; Grüning NM; Wamelink MM; Kerick M; Kirpy A; Parkhomchuk D; Bluemlein K; Schweiger MR; Soldatov A; Lehrach H; Jakobs C; Ralser M
    Antioxid Redox Signal; 2011 Jul; 15(2):311-24. PubMed ID: 21348809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diamide-induced alterations of intracellular thiol status and the regulation of glucose metabolism in the developing rat conceptus in vitro.
    Hiranruengchok R; Harris C
    Teratology; 1995 Oct; 52(4):205-14. PubMed ID: 8838290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time and Demand are Two Critical Dimensions of Immunometabolism: The Process of Macrophage Activation and the Pentose Phosphate Pathway.
    Nagy C; Haschemi A
    Front Immunol; 2015; 6():164. PubMed ID: 25904920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical manipulation of glucose metabolism in porcine oocytes: effects on nuclear and cytoplasmic maturation in vitro.
    Herrick JR; Brad AM; Krisher RL
    Reproduction; 2006 Feb; 131(2):289-98. PubMed ID: 16452722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities.
    Zhao J; Baba T; Mori H; Shimizu K
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):91-8. PubMed ID: 14661115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PPARdelta/beta: the lobbyist switching macrophage allegiance in favor of metabolism.
    Desvergne B
    Cell Metab; 2008 Jun; 7(6):467-9. PubMed ID: 18522825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic flux analysis using stoichiometric models for Aspergillus niger: comparison under glucoamylase-producing and non-producing conditions.
    Melzer G; Dalpiaz A; Grote A; Kucklick M; Göcke Y; Jonas R; Dersch P; Franco-Lara E; Nörtemann B; Hempel DC
    J Biotechnol; 2007 Dec; 132(4):405-17. PubMed ID: 17931730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. O(2)-dependent stimulation of the pentose phosphate pathway by S-nitrosocysteine in human erythrocytes.
    Misiti F; Meucci E; Zuppi C; Vincenzoni F; Giardina B; Castagnola M; Messana I
    Biochem Biophys Res Commun; 2002 Jun; 294(4):829-34. PubMed ID: 12061782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of the AMP-activated protein kinase by glucose in cardiac myocytes: a role for the pentose phosphate pathway.
    Tabidi I; Saggerson D
    Biosci Rep; 2012 Jun; 32(3):229-39. PubMed ID: 21977910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of glucose metabolism by CD44 contributes to antioxidant status and drug resistance in cancer cells.
    Tamada M; Nagano O; Tateyama S; Ohmura M; Yae T; Ishimoto T; Sugihara E; Onishi N; Yamamoto T; Yanagawa H; Suematsu M; Saya H
    Cancer Res; 2012 Mar; 72(6):1438-48. PubMed ID: 22293754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation.
    Hector RE; Mertens JA; Bowman MJ; Nichols NN; Cotta MA; Hughes SR
    Yeast; 2011 Sep; 28(9):645-60. PubMed ID: 21809385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.