BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

732 related articles for article (PubMed ID: 22682246)

  • 1. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor.
    Deng W; Lee J; Wang H; Miller J; Reik A; Gregory PD; Dean A; Blobel GA
    Cell; 2012 Jun; 149(6):1233-44. PubMed ID: 22682246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LDB1-mediated enhancer looping can be established independent of mediator and cohesin.
    Krivega I; Dean A
    Nucleic Acids Res; 2017 Aug; 45(14):8255-8268. PubMed ID: 28520978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of LDB1 in the transition from chromatin looping to transcription activation.
    Krivega I; Dale RK; Dean A
    Genes Dev; 2014 Jun; 28(12):1278-90. PubMed ID: 24874989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The hematopoietic regulator TAL1 is required for chromatin looping between the β-globin LCR and human γ-globin genes to activate transcription.
    Yun WJ; Kim YW; Kang Y; Lee J; Dean A; Kim A
    Nucleic Acids Res; 2014 Apr; 42(7):4283-93. PubMed ID: 24470145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple functions of Ldb1 required for beta-globin activation during erythroid differentiation.
    Song SH; Kim A; Ragoczy T; Bender MA; Groudine M; Dean A
    Blood; 2010 Sep; 116(13):2356-64. PubMed ID: 20570862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactivation of developmentally silenced globin genes by forced chromatin looping.
    Deng W; Rupon JW; Krivega I; Breda L; Motta I; Jahn KS; Reik A; Gregory PD; Rivella S; Dean A; Blobel GA
    Cell; 2014 Aug; 158(4):849-860. PubMed ID: 25126789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A positive role for NLI/Ldb1 in long-range beta-globin locus control region function.
    Song SH; Hou C; Dean A
    Mol Cell; 2007 Dec; 28(5):810-22. PubMed ID: 18082606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct Ldb1/NLI complexes orchestrate γ-globin repression and reactivation through ETO2 in human adult erythroid cells.
    Kiefer CM; Lee J; Hou C; Dale RK; Lee YT; Meier ER; Miller JL; Dean A
    Blood; 2011 Dec; 118(23):6200-8. PubMed ID: 22010104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forced chromatin looping raises fetal hemoglobin in adult sickle cells to higher levels than pharmacologic inducers.
    Breda L; Motta I; Lourenco S; Gemmo C; Deng W; Rupon JW; Abdulmalik OY; Manwani D; Blobel GA; Rivella S
    Blood; 2016 Aug; 128(8):1139-43. PubMed ID: 27405777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissecting the function of the adult β-globin downstream promoter region using an artificial zinc finger DNA-binding domain.
    Barrow JJ; Li Y; Hossain M; Huang S; Bungert J
    Nucleic Acids Res; 2014 Apr; 42(7):4363-74. PubMed ID: 24497190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ldb1-nucleated transcription complexes function as primary mediators of global erythroid gene activation.
    Li L; Freudenberg J; Cui K; Dale R; Song SH; Dean A; Zhao K; Jothi R; Love PE
    Blood; 2013 May; 121(22):4575-85. PubMed ID: 23610375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Essential role of NF-E2 in remodeling of chromatin structure and transcriptional activation of the epsilon-globin gene in vivo by 5' hypersensitive site 2 of the beta-globin locus control region.
    Gong QH; McDowell JC; Dean A
    Mol Cell Biol; 1996 Nov; 16(11):6055-64. PubMed ID: 8887635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1.
    Vakoc CR; Letting DL; Gheldof N; Sawado T; Bender MA; Groudine M; Weiss MJ; Dekker J; Blobel GA
    Mol Cell; 2005 Feb; 17(3):453-62. PubMed ID: 15694345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic and additive properties of the beta-globin locus control region (LCR) revealed by 5'HS3 deletion mutations: implication for LCR chromatin architecture.
    Fang X; Sun J; Xiang P; Yu M; Navas PA; Peterson KR; Stamatoyannopoulos G; Li Q
    Mol Cell Biol; 2005 Aug; 25(16):7033-41. PubMed ID: 16055715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ldb1 complexes: the new master regulators of erythroid gene transcription.
    Love PE; Warzecha C; Li L
    Trends Genet; 2014 Jan; 30(1):1-9. PubMed ID: 24290192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Fractional Occupancy of a Tandem Maf Recognition Element and Its Role in Long-Range β-Globin Gene Regulation.
    Stees JR; Hossain MA; Sunose T; Kudo Y; Pardo CE; Nabilsi NH; Darst RP; Poudyal R; Igarashi K; Huang S; Kladde MP; Bungert J
    Mol Cell Biol; 2016 Jan; 36(2):238-50. PubMed ID: 26503787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic footprinting and sequencing of human beta-globin locus. Tissue specificity and cell line artifact.
    Reddy PM; Stamatoyannopoulos G; Papayannopoulou T; Shen CK
    J Biol Chem; 1994 Mar; 269(11):8287-95. PubMed ID: 8132552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GATA1 directly mediates interactions with closely spaced pseudopalindromic but not distantly spaced double GATA sites on DNA.
    Wilkinson-White L; Lester KL; Ripin N; Jacques DA; Mitchell Guss J; Matthews JM
    Protein Sci; 2015 Oct; 24(10):1649-59. PubMed ID: 26234528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of human LDB1 in complex with SSBP2.
    Wang H; Kim J; Wang Z; Yan XX; Dean A; Xu W
    Proc Natl Acad Sci U S A; 2020 Jan; 117(2):1042-1048. PubMed ID: 31892537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embryonic erythropoiesis and hemoglobin switching require transcriptional repressor ETO2 to modulate chromatin organization.
    Guo X; Plank-Bazinet J; Krivega I; Dale RK; Dean A
    Nucleic Acids Res; 2020 Oct; 48(18):10226-10240. PubMed ID: 32960220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.