BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 22682255)

  • 1. Comparative epigenomic annotation of regulatory DNA.
    Xiao S; Xie D; Cao X; Yu P; Xing X; Chen CC; Musselman M; Xie M; West FD; Lewin HA; Wang T; Zhong S
    Cell; 2012 Jun; 149(6):1381-92. PubMed ID: 22682255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal clustering of the epigenome reveals rules of dynamic gene regulation.
    Yu P; Xiao S; Xin X; Song CX; Huang W; McDee D; Tanaka T; Wang T; He C; Zhong S
    Genome Res; 2013 Feb; 23(2):352-64. PubMed ID: 23033340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding variation in transcription factor binding by modeling transcription factor genome-epigenome interactions.
    Chen CC; Xiao S; Xie D; Cao X; Song CX; Wang T; He C; Zhong S
    PLoS Comput Biol; 2013; 9(12):e1003367. PubMed ID: 24339764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transposable Elements and DNA Methylation Create in Embryonic Stem Cells Human-Specific Regulatory Sequences Associated with Distal Enhancers and Noncoding RNAs.
    Glinsky GV
    Genome Biol Evol; 2015 May; 7(6):1432-54. PubMed ID: 25956794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenomic analysis reveals DNA motifs regulating histone modifications in human and mouse.
    Ngo V; Chen Z; Zhang K; Whitaker JW; Wang M; Wang W
    Proc Natl Acad Sci U S A; 2019 Feb; 116(9):3668-3677. PubMed ID: 30755522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The bread wheat epigenomic map reveals distinct chromatin architectural and evolutionary features of functional genetic elements.
    Li Z; Wang M; Lin K; Xie Y; Guo J; Ye L; Zhuang Y; Teng W; Ran X; Tong Y; Xue Y; Zhang W; Zhang Y
    Genome Biol; 2019 Jul; 20(1):139. PubMed ID: 31307500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells.
    Szulwach KE; Li X; Li Y; Song CX; Han JW; Kim S; Namburi S; Hermetz K; Kim JJ; Rudd MK; Yoon YS; Ren B; He C; Jin P
    PLoS Genet; 2011 Jun; 7(6):e1002154. PubMed ID: 21731508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic epigenetic regulation of the Oct4 and Nanog regulatory regions during neural differentiation in rhesus nuclear transfer embryonic stem cells.
    Wang K; Chen Y; Chang EA; Knott JG; Cibelli JB
    Cloning Stem Cells; 2009 Dec; 11(4):483-96. PubMed ID: 20025521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polycomb repressive complex 2 epigenomic signature defines age-associated hypermethylation and gene expression changes.
    Dozmorov MG
    Epigenetics; 2015; 10(6):484-95. PubMed ID: 25880792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational inference of a genomic pluripotency signature in human and mouse stem cells.
    Kurum E; Benayoun BA; Malhotra A; George J; Ucar D
    Biol Direct; 2016 Sep; 11():47. PubMed ID: 27639379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue-specific DNA methylation is conserved across human, mouse, and rat, and driven by primary sequence conservation.
    Zhou J; Sears RL; Xing X; Zhang B; Li D; Rockweiler NB; Jang HS; Choudhary MNK; Lee HJ; Lowdon RF; Arand J; Tabers B; Gu CC; Cicero TJ; Wang T
    BMC Genomics; 2017 Sep; 18(1):724. PubMed ID: 28899353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the human epigenome from DNA motifs.
    Whitaker JW; Chen Z; Wang W
    Nat Methods; 2015 Mar; 12(3):265-72, 7 p following 272. PubMed ID: 25240437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells.
    Sheik Mohamed J; Gaughwin PM; Lim B; Robson P; Lipovich L
    RNA; 2010 Feb; 16(2):324-37. PubMed ID: 20026622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-cell joint profiling of multiple epigenetic proteins and gene transcription.
    Xiong H; Wang Q; Li CC; He A
    Sci Adv; 2024 Jan; 10(1):eadi3664. PubMed ID: 38170774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying co-opted transposable elements using comparative epigenomics.
    Venuto D; Bourque G
    Dev Growth Differ; 2018 Jan; 60(1):53-62. PubMed ID: 29363107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic and genomic regulatory elements reveal aspects of
    King DM; Hong CKY; Shepherdson JL; Granas DM; Maricque BB; Cohen BA
    Elife; 2020 Feb; 9():. PubMed ID: 32043966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding regulatory structures and features from epigenomics profiles: A Roadmap-ENCODE Variational Auto-Encoder (RE-VAE) model.
    Hu R; Pei G; Jia P; Zhao Z
    Methods; 2021 May; 189():44-53. PubMed ID: 31672653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IMPACT: Genomic Annotation of Cell-State-Specific Regulatory Elements Inferred from the Epigenome of Bound Transcription Factors.
    Amariuta T; Luo Y; Gazal S; Davenport EE; van de Geijn B; Ishigaki K; Westra HJ; Teslovich N; Okada Y; Yamamoto K; ; Price AL; Raychaudhuri S
    Am J Hum Genet; 2019 May; 104(5):879-895. PubMed ID: 31006511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebral Organoids Recapitulate Epigenomic Signatures of the Human Fetal Brain.
    Luo C; Lancaster MA; Castanon R; Nery JR; Knoblich JA; Ecker JR
    Cell Rep; 2016 Dec; 17(12):3369-3384. PubMed ID: 28009303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global identification of transcriptional regulators of pluripotency and differentiation in embryonic stem cells.
    Won KJ; Xu Z; Zhang X; Whitaker JW; Shoemaker R; Ren B; Xu Y; Wang W
    Nucleic Acids Res; 2012 Sep; 40(17):8199-209. PubMed ID: 22730289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.