These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 22682255)
1. Comparative epigenomic annotation of regulatory DNA. Xiao S; Xie D; Cao X; Yu P; Xing X; Chen CC; Musselman M; Xie M; West FD; Lewin HA; Wang T; Zhong S Cell; 2012 Jun; 149(6):1381-92. PubMed ID: 22682255 [TBL] [Abstract][Full Text] [Related]
2. Spatiotemporal clustering of the epigenome reveals rules of dynamic gene regulation. Yu P; Xiao S; Xin X; Song CX; Huang W; McDee D; Tanaka T; Wang T; He C; Zhong S Genome Res; 2013 Feb; 23(2):352-64. PubMed ID: 23033340 [TBL] [Abstract][Full Text] [Related]
3. Understanding variation in transcription factor binding by modeling transcription factor genome-epigenome interactions. Chen CC; Xiao S; Xie D; Cao X; Song CX; Wang T; He C; Zhong S PLoS Comput Biol; 2013; 9(12):e1003367. PubMed ID: 24339764 [TBL] [Abstract][Full Text] [Related]
4. Transposable Elements and DNA Methylation Create in Embryonic Stem Cells Human-Specific Regulatory Sequences Associated with Distal Enhancers and Noncoding RNAs. Glinsky GV Genome Biol Evol; 2015 May; 7(6):1432-54. PubMed ID: 25956794 [TBL] [Abstract][Full Text] [Related]
5. Epigenomic analysis reveals DNA motifs regulating histone modifications in human and mouse. Ngo V; Chen Z; Zhang K; Whitaker JW; Wang M; Wang W Proc Natl Acad Sci U S A; 2019 Feb; 116(9):3668-3677. PubMed ID: 30755522 [TBL] [Abstract][Full Text] [Related]
6. The bread wheat epigenomic map reveals distinct chromatin architectural and evolutionary features of functional genetic elements. Li Z; Wang M; Lin K; Xie Y; Guo J; Ye L; Zhuang Y; Teng W; Ran X; Tong Y; Xue Y; Zhang W; Zhang Y Genome Biol; 2019 Jul; 20(1):139. PubMed ID: 31307500 [TBL] [Abstract][Full Text] [Related]
7. Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells. Szulwach KE; Li X; Li Y; Song CX; Han JW; Kim S; Namburi S; Hermetz K; Kim JJ; Rudd MK; Yoon YS; Ren B; He C; Jin P PLoS Genet; 2011 Jun; 7(6):e1002154. PubMed ID: 21731508 [TBL] [Abstract][Full Text] [Related]
8. Dynamic epigenetic regulation of the Oct4 and Nanog regulatory regions during neural differentiation in rhesus nuclear transfer embryonic stem cells. Wang K; Chen Y; Chang EA; Knott JG; Cibelli JB Cloning Stem Cells; 2009 Dec; 11(4):483-96. PubMed ID: 20025521 [TBL] [Abstract][Full Text] [Related]
10. Computational inference of a genomic pluripotency signature in human and mouse stem cells. Kurum E; Benayoun BA; Malhotra A; George J; Ucar D Biol Direct; 2016 Sep; 11():47. PubMed ID: 27639379 [TBL] [Abstract][Full Text] [Related]
11. Tissue-specific DNA methylation is conserved across human, mouse, and rat, and driven by primary sequence conservation. Zhou J; Sears RL; Xing X; Zhang B; Li D; Rockweiler NB; Jang HS; Choudhary MNK; Lee HJ; Lowdon RF; Arand J; Tabers B; Gu CC; Cicero TJ; Wang T BMC Genomics; 2017 Sep; 18(1):724. PubMed ID: 28899353 [TBL] [Abstract][Full Text] [Related]
12. Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. Sheik Mohamed J; Gaughwin PM; Lim B; Robson P; Lipovich L RNA; 2010 Feb; 16(2):324-37. PubMed ID: 20026622 [TBL] [Abstract][Full Text] [Related]
13. Single-cell joint profiling of multiple epigenetic proteins and gene transcription. Xiong H; Wang Q; Li CC; He A Sci Adv; 2024 Jan; 10(1):eadi3664. PubMed ID: 38170774 [TBL] [Abstract][Full Text] [Related]
14. Predicting the human epigenome from DNA motifs. Whitaker JW; Chen Z; Wang W Nat Methods; 2015 Mar; 12(3):265-72, 7 p following 272. PubMed ID: 25240437 [TBL] [Abstract][Full Text] [Related]
15. Identifying co-opted transposable elements using comparative epigenomics. Venuto D; Bourque G Dev Growth Differ; 2018 Jan; 60(1):53-62. PubMed ID: 29363107 [TBL] [Abstract][Full Text] [Related]
16. Synthetic and genomic regulatory elements reveal aspects of King DM; Hong CKY; Shepherdson JL; Granas DM; Maricque BB; Cohen BA Elife; 2020 Feb; 9():. PubMed ID: 32043966 [TBL] [Abstract][Full Text] [Related]
17. Decoding regulatory structures and features from epigenomics profiles: A Roadmap-ENCODE Variational Auto-Encoder (RE-VAE) model. Hu R; Pei G; Jia P; Zhao Z Methods; 2021 May; 189():44-53. PubMed ID: 31672653 [TBL] [Abstract][Full Text] [Related]
18. IMPACT: Genomic Annotation of Cell-State-Specific Regulatory Elements Inferred from the Epigenome of Bound Transcription Factors. Amariuta T; Luo Y; Gazal S; Davenport EE; van de Geijn B; Ishigaki K; Westra HJ; Teslovich N; Okada Y; Yamamoto K; ; Price AL; Raychaudhuri S Am J Hum Genet; 2019 May; 104(5):879-895. PubMed ID: 31006511 [TBL] [Abstract][Full Text] [Related]
19. Cerebral Organoids Recapitulate Epigenomic Signatures of the Human Fetal Brain. Luo C; Lancaster MA; Castanon R; Nery JR; Knoblich JA; Ecker JR Cell Rep; 2016 Dec; 17(12):3369-3384. PubMed ID: 28009303 [TBL] [Abstract][Full Text] [Related]
20. Global identification of transcriptional regulators of pluripotency and differentiation in embryonic stem cells. Won KJ; Xu Z; Zhang X; Whitaker JW; Shoemaker R; Ren B; Xu Y; Wang W Nucleic Acids Res; 2012 Sep; 40(17):8199-209. PubMed ID: 22730289 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]