These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 2268239)

  • 21. Boron self-shielding effects on dose delivery of neutron capture therapy using epithermal beam and boronophenylalanine.
    Ye SJ
    Med Phys; 1999 Nov; 26(11):2488-93. PubMed ID: 10587238
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Boron neutron capture therapy for the treatment of cerebral gliomas. I. Theoretical evaluation of the efficacy of various neutron beams.
    Zamenhof RG; Murray BW; Brownell GL; Wellum GR; Tolpin EI
    Med Phys; 1975; 2(2):47-60. PubMed ID: 1186617
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of an epithermal beam for NCT at the Brookhaven Medical Research Reactor (BMRR).
    Fairchild RG; Kalef-Ezra JA; Fiarman S; Wielopolski L; Hanz J; Mussolino S; Wheeler F
    Strahlenther Onkol; 1989; 165(2-3):84-6. PubMed ID: 2494751
    [No Abstract]   [Full Text] [Related]  

  • 24. A versatile, new accelerator design for boron neutron capture therapy: accelerator design and neutron energy considerations.
    Shefer RE; Klinkowstein RE; Yanch JC; Brownell GL
    Basic Life Sci; 1990; 54():259-70. PubMed ID: 2176456
    [No Abstract]   [Full Text] [Related]  

  • 25. A beam-modification assembly for experimental neutron capture therapy of brain tumors.
    Slatkin DN; Kalef-Ezra JA; Saraf SK; Joel DD
    Basic Life Sci; 1990; 54():317-20. PubMed ID: 2268246
    [No Abstract]   [Full Text] [Related]  

  • 26. Evaluation of apoptosis and micronucleation induced by reactor neutron beams with two different cadmium ratios in total and quiescent cell populations within solid tumors.
    Masunaga S; Ono K; Sakurai Y; Takagaki M; Kobayashi T; Kinashi Y; Suzuki M
    Int J Radiat Oncol Biol Phys; 2001 Nov; 51(3):828-39. PubMed ID: 11697329
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A state-of-the-art epithermal neutron irradiation facility for neutron capture therapy.
    Riley KJ; Binns PJ; Harling OK
    Phys Med Biol; 2004 Aug; 49(16):3725-35. PubMed ID: 15446801
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Teatment planning figures of merit in thermal and epithermal boron neutron capture therapy of brain tumours.
    Wallace SA; Mathur JN; Allen BJ
    Phys Med Biol; 1994 May; 39(5):897-906. PubMed ID: 15552092
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Current status of 10B-neutron capture therapy: enhancement of tumor dose via beam filtration and dose rate, and the effects of these parameters on minimum boron content: a theoretical evaluation.
    Fairchild RG; Bond VP
    Int J Radiat Oncol Biol Phys; 1985 Apr; 11(4):831-40. PubMed ID: 3980279
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An accelerator-based epithermal neutron beam design for BNCT and dosimetric evaluation using a voxel head phantom.
    Lee DJ; Han CY; Park SH; Kim JK
    Radiat Prot Dosimetry; 2004; 110(1-4):655-60. PubMed ID: 15353726
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A feasibility study of the Tehran research reactor as a neutron source for BNCT.
    Kasesaz Y; Khalafi H; Rahmani F; Ezati A; Keyvani M; Hossnirokh A; Shamami MA; Monshizadeh M
    Appl Radiat Isot; 2014 Aug; 90():132-7. PubMed ID: 24742535
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monte Carlo based dosimetry and treatment planning for neutron capture therapy of brain tumors.
    Zamenhof RG; Clement SD; Harling OK; Brenner JF; Wazer DE; Madoc-Jones H; Yanch JC
    Basic Life Sci; 1990; 54():283-305. PubMed ID: 2268244
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fission reactor neutron sources for neutron capture therapy--a critical review.
    Harling OK; Riley KJ
    J Neurooncol; 2003; 62(1-2):7-17. PubMed ID: 12749699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent developments in neutron capture therapy.
    Fairchild RG; Wheeler F; Slatkin DN; Coderre J; Micca P; Laster B; Kahl SB; Som P; Fand I
    Strahlenther Onkol; 1989 Apr; 165(4):343-7. PubMed ID: 2711346
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A prototype epithermal neutron beam for boron neutron capture therapy.
    Noonan DJ; Russell JL; Brugger RM
    Med Phys; 1986; 13(2):211-6. PubMed ID: 3010065
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monte Carlo based protocol for cell survival and tumour control probability in BNCT.
    Ye SJ
    Phys Med Biol; 1999 Feb; 44(2):447-61. PubMed ID: 10070794
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The potential of neutron capture therapy in the management of uncontrollable localised tumours.
    Allen BJ
    Australas Radiol; 1990 Nov; 34(4):297-305. PubMed ID: 1965483
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extended set of activation monitors for NCT beam characterization and spectral conditions of the beam after reactor fuel conversion.
    Marek M; Vins M; Lahodova Z; Viererbl L; Koleska M
    Appl Radiat Isot; 2014 Jun; 88():157-61. PubMed ID: 24369892
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Neutron capturing irradiation: principle, current results and perspectives].
    Pignol JP; Chauvel P
    Bull Cancer Radiother; 1995; 82(3):283-97. PubMed ID: 8554878
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preliminary evaluations of the undesirable patient dose from a BNCT treatment at the ENEA-TAPIRO reactor.
    Ferrari P; Gualdrini G; Nava E; Burn KW
    Radiat Prot Dosimetry; 2007; 126(1-4):636-9. PubMed ID: 17704505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.