These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 22682398)
1. Photocytotoxicity in human dermal fibroblasts elicited by permanent makeup inks containing titanium dioxide. Wamer WG; Yin JJ J Cosmet Sci; 2011; 62(6):535-47. PubMed ID: 22682398 [TBL] [Abstract][Full Text] [Related]
2. Phototoxic versus photoprotective effects of tattoo pigments in reconstructed human skin models: In vitro phototoxicity testing of tattoo pigments: 3D versus 2D. Hering H; Zoschke C; König F; Kühn M; Luch A; Schreiver I Toxicology; 2021 Aug; 460():152872. PubMed ID: 34303732 [TBL] [Abstract][Full Text] [Related]
3. TatS: a novel in vitro tattooed human skin model for improved pigment toxicology research. Hering H; Zoschke C; Kühn M; Gadicherla AK; Weindl G; Luch A; Schreiver I Arch Toxicol; 2020 Jul; 94(7):2423-2434. PubMed ID: 32661687 [TBL] [Abstract][Full Text] [Related]
4. Zeolite encapsulation decreases TiO2-photosensitized ROS generation in cultured human skin fibroblasts. Shen B; Scaiano JC; English AM Photochem Photobiol; 2006; 82(1):5-12. PubMed ID: 16149847 [TBL] [Abstract][Full Text] [Related]
5. Response of mouse skin to tattooing: use of SKH-1 mice as a surrogate model for human tattooing. Gopee NV; Cui Y; Olson G; Warbritton AR; Miller BJ; Couch LH; Wamer WG; Howard PC Toxicol Appl Pharmacol; 2005 Dec; 209(2):145-58. PubMed ID: 15913690 [TBL] [Abstract][Full Text] [Related]
6. Detection of anaerobic and aerobic bacteria from commercial tattoo and permanent makeup inks. Yoon S; Kondakala S; Foley SL; Moon MS; Huang M-CJ; Periz G; Zang J; Katz LM; Kim S-J; Kweon O Appl Environ Microbiol; 2024 Jul; 90(7):e0027624. PubMed ID: 38953654 [TBL] [Abstract][Full Text] [Related]
8. Microbiological survey of commercial tattoo and permanent makeup inks available in the United States. Nho SW; Kim SJ; Kweon O; Howard PC; Moon MS; Sadrieh NK; Cerniglia CE J Appl Microbiol; 2018 May; 124(5):1294-1302. PubMed ID: 29388315 [TBL] [Abstract][Full Text] [Related]
9. Light-induced mutagenicity in Salmonella TA102 and genotoxicity/cytotoxicity in human T-cells by 3,3'-dichlorobenzidine: a chemical used in the manufacture of dyes and pigments and in tattoo inks. Wang L; Yan J; Hardy W; Mosley C; Wang S; Yu H Toxicology; 2005 Feb; 207(3):411-8. PubMed ID: 15664269 [TBL] [Abstract][Full Text] [Related]
10. Assessment of cytotoxicity and sensitization potential of intradermally injected tattoo inks in reconstructed human skin. Karregat JJJP; Rustemeyer T; van der Bent SAS; Spiekstra SW; Thon M; Fernandez Rivas D; Gibbs S Contact Dermatitis; 2021 Sep; 85(3):324-339. PubMed ID: 34029376 [TBL] [Abstract][Full Text] [Related]
11. In vitro quantitative chemical analysis of tattoo pigments. Timko AL; Miller CH; Johnson FB; Ross E Arch Dermatol; 2001 Feb; 137(2):143-7. PubMed ID: 11176685 [TBL] [Abstract][Full Text] [Related]
12. Identification of the pigments used in permanent makeup and their ability to elicit allergic contact dermatitis. Rigali S; Cozzi C; Liszewski W J Am Acad Dermatol; 2024 Sep; 91(3):474-479. PubMed ID: 38825076 [TBL] [Abstract][Full Text] [Related]
13. In vitro phototoxicity and hazard identification of nano-scale titanium dioxide. Sanders K; Degn LL; Mundy WR; Zucker RM; Dreher K; Zhao B; Roberts JE; Boyes WK Toxicol Appl Pharmacol; 2012 Jan; 258(2):226-36. PubMed ID: 22115978 [TBL] [Abstract][Full Text] [Related]
14. Tattoo inks contain polycyclic aromatic hydrocarbons that additionally generate deleterious singlet oxygen. Regensburger J; Lehner K; Maisch T; Vasold R; Santarelli F; Engel E; Gollmer A; König B; Landthaler M; Bäumler W Exp Dermatol; 2010 Aug; 19(8):e275-81. PubMed ID: 20545755 [TBL] [Abstract][Full Text] [Related]
15. A new high-throughput method to make a quality control on tattoo inks. Persechino S; Toniolo C; Ciccola A; Serafini I; Tammaro A; Postorino P; Persechino F; Serafini M Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():547-551. PubMed ID: 30179798 [TBL] [Abstract][Full Text] [Related]
16. Titanium, a major constituent of blue ink, causes resistance to Nd-YAG (1064 nm) laser: results of animal experiments. Kim JW; Lee JW; Won YH; Kim JH; Lee SC Acta Derm Venereol; 2006; 86(2):110-3. PubMed ID: 16648911 [TBL] [Abstract][Full Text] [Related]
17. How to measure hazards/risks following exposures to nanoscale or pigment-grade titanium dioxide particles. Warheit DB Toxicol Lett; 2013 Jul; 220(2):193-204. PubMed ID: 23603385 [TBL] [Abstract][Full Text] [Related]
18. Investigation of micronized titanium dioxide penetration in human skin xenografts and its effect on cellular functions of human skin-derived cells. Kiss B; Bíró T; Czifra G; Tóth BI; Kertész Z; Szikszai Z; Kiss AZ; Juhász I; Zouboulis CC; Hunyadi J Exp Dermatol; 2008 Aug; 17(8):659-67. PubMed ID: 18312389 [TBL] [Abstract][Full Text] [Related]
19. Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Jin CY; Zhu BS; Wang XF; Lu QH Chem Res Toxicol; 2008 Sep; 21(9):1871-7. PubMed ID: 18680314 [TBL] [Abstract][Full Text] [Related]
20. Black tattoo inks induce reactive oxygen species production correlating with aggregation of pigment nanoparticles and product brand but not with the polycyclic aromatic hydrocarbon content. Høgsberg T; Jacobsen NR; Clausen PA; Serup J Exp Dermatol; 2013 Jul; 22(7):464-9. PubMed ID: 23800057 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]