These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 2268240)

  • 61. Determination of dose components in phantoms irradiated with an epithermal neutron beam for boron neutron capture therapy.
    Raaijmakers CP; Konijnenberg MW; Verhagen HW; Mijnheer BJ
    Med Phys; 1995 Mar; 22(3):321-9. PubMed ID: 7596322
    [TBL] [Abstract][Full Text] [Related]  

  • 62. RBE values for cyclotron neutrons for effects on normal tissues and tumours as a function of dose and dose fractionation.
    Field SB; Hornsey S
    Eur J Cancer (1965); 1971 May; 7(2):161-9. PubMed ID: 5089996
    [No Abstract]   [Full Text] [Related]  

  • 63. Sensitivity studies of beam directionality, beam size, and neutron spectrum for a fission converter-based epithermal neutron beam for boron neutron capture therapy.
    Sakamoto S; Kiger WS; Harling OK
    Med Phys; 1999 Sep; 26(9):1979-88. PubMed ID: 10505888
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Possibilities and prospects of radiotherapy using densely ionized particles and neutrons].
    Scheer KE
    Strahlentherapie; 1974 Nov; 148(5):440-6. PubMed ID: 4216988
    [No Abstract]   [Full Text] [Related]  

  • 65. [Current problems of neutron radiobiology].
    Obaturov GM; Sokolov VA; Ul'ianenko SE; Tsyb TS
    Radiats Biol Radioecol; 1997; 37(4):475-81. PubMed ID: 9599600
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Monte Carlo based dosimetry and treatment planning for neutron capture therapy of brain tumors.
    Zamenhof RG; Clement SD; Harling OK; Brenner JF; Wazer DE; Madoc-Jones H; Yanch JC
    Basic Life Sci; 1990; 54():283-305. PubMed ID: 2268244
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Neutron fluence in antiproton radiotherapy, measurements and simulations.
    Bassler N; Holzscheiter MH; Petersen JB
    Acta Oncol; 2010 Oct; 49(7):1149-59. PubMed ID: 20831507
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Tradescantia stamen hairs: a biological monitor of doses outside the neutron beam used in cancer therapy.
    Huczkowski J; Cebulska-Wasilewska A; Lazarska B
    Radiobiol Radiother (Berl); 1985; 26(1):65-9. PubMed ID: 4001340
    [No Abstract]   [Full Text] [Related]  

  • 69. Neutron production from electron accelerators used for medical purposes.
    Axton EJ; Bardell AG
    Phys Med Biol; 1972 Mar; 17(2):293-8. PubMed ID: 4627333
    [No Abstract]   [Full Text] [Related]  

  • 70. Head phantom experiment and calculation for NCT using various neutron beams.
    Matsumoto T; Aizawa O
    Strahlenther Onkol; 1989; 165(2-3):98-100. PubMed ID: 2494756
    [No Abstract]   [Full Text] [Related]  

  • 71. Research reactor adaptation project for neutron capture therapy.
    Sauer IL; de Souza JA; Montagno Ede A; Hatanaka H
    Strahlenther Onkol; 1989; 165(2-3):81-3. PubMed ID: 2494750
    [No Abstract]   [Full Text] [Related]  

  • 72. Chlorine and sodium perfusion and electrolyte balance in human tissue and tumours before and during neutron and photon radiotherapy.
    Koester L; Knopf K; Auberger T
    Phys Med Biol; 1997 Aug; 42(8):1587-603. PubMed ID: 9279908
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Modification of the radial beam port of ITU TRIGA Mark II research reactor for BNCT applications.
    Akan Z; Türkmen M; Çakir T; Reyhancan İA; Çolak Ü; Okka M; Kiziltaş S
    Appl Radiat Isot; 2015 May; 99():110-6. PubMed ID: 25746919
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [The hadron therapy project].
    Amaldi U; Arduini G; Cambria R; Canzi C; Furetta C; Leone R; Rossi S; Silari M; Tosi G; Vecchi L
    Radiol Med; 1993 Nov; 86(5):669-79. PubMed ID: 8272553
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Estimation of the activity generated by neutron activation in control rods of a BWR.
    Ródenas J; Gallardo S; Abarca A; Juan V
    Appl Radiat Isot; 2010; 68(4-5):905-8. PubMed ID: 19836253
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Dosimetric performance evaluation regarding proton beam incident angles of a lithium-based AB-BNCT design.
    Lee PY; Liu YH; Jiang SH
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):403-9. PubMed ID: 24493784
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [Technological problems in use of fast reactors for radiotherapy of patients with malignant tumors].
    Mardynskií IS; Sysoev AS; Gulidov IA; Obaturov GM; Sokolov VA; Ul'ianenko SE; Kotukhov II
    Vestn Rentgenol Radiol; 1997; (4):26-9. PubMed ID: 9289902
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Evaluation of inelastic hadronic processes for 250 MeV proton interactions in tissue and iron using GEANT4.
    Chen Y; Ahmad S
    Radiat Prot Dosimetry; 2009 Aug; 136(1):11-6. PubMed ID: 19689963
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Investigation of radiation fields outside the Sub-critical Assembly in Dubna.
    Seltbor P; Lopatkin A; Gudowski W; Shvetsov V; Polanski A
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):449-53. PubMed ID: 16604676
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Development and dosimetry of an "epithermal" neutron beam for possible use in neutron capture therapy. II. Absorbed dose measurements in a phantom man.
    Fairchild RG; Goodman LJ
    Phys Med Biol; 1966 Jan; 11(1):15-30. PubMed ID: 5915414
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.