These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 2268277)
1. Elimination of a reactive thiol group from the active site of chloramphenicol acetyltransferase. Lewendon A; Shaw WV Biochem J; 1990 Dec; 272(2):499-504. PubMed ID: 2268277 [TBL] [Abstract][Full Text] [Related]
2. Nucleotide sequences of genes encoding the type II chloramphenicol acetyltransferases of Escherichia coli and Haemophilus influenzae, which are sensitive to inhibition by thiol-reactive reagents. Murray IA; Martinez-Suarez JV; Close TJ; Shaw WV Biochem J; 1990 Dec; 272(2):505-10. PubMed ID: 2268278 [TBL] [Abstract][Full Text] [Related]
3. Steroid recognition by chloramphenicol acetyltransferase: engineering and structural analysis of a high affinity fusidic acid binding site. Murray IA; Cann PA; Day PJ; Derrick JP; Sutcliffe MJ; Shaw WV; Leslie AG J Mol Biol; 1995 Dec; 254(5):993-1005. PubMed ID: 7500366 [TBL] [Abstract][Full Text] [Related]
4. Evidence for transition-state stabilization by serine-148 in the catalytic mechanism of chloramphenicol acetyltransferase. Lewendon A; Murray IA; Shaw WV; Gibbs MR; Leslie AG Biochemistry; 1990 Feb; 29(8):2075-80. PubMed ID: 2109633 [TBL] [Abstract][Full Text] [Related]
5. The pKa of the catalytic histidine residue of chloramphenicol acetyltransferase. Lewendon A; Shaw WV Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):15-9. PubMed ID: 8439283 [TBL] [Abstract][Full Text] [Related]
6. Substitutions in the active site of chloramphenicol acetyltransferase: role of a conserved aspartate. Lewendon A; Murray IA; Kleanthous C; Cullis PM; Shaw WV Biochemistry; 1988 Sep; 27(19):7385-90. PubMed ID: 3061455 [TBL] [Abstract][Full Text] [Related]
7. Essential cysteines in 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase from Escherichia coli: analysis by chemical modification and site-directed mutagenesis. Salleh HM; Patel MA; Woodard RW Biochemistry; 1996 Jul; 35(27):8942-7. PubMed ID: 8688430 [TBL] [Abstract][Full Text] [Related]
8. Alternative binding modes for chloramphenicol and 1-substituted chloramphenicol analogues revealed by site-directed mutagenesis and X-ray crystallography of chloramphenicol acetyltransferase. Murray IA; Lewendon A; Williams JA; Cullis PM; Shaw WV; Leslie AG Biochemistry; 1991 Apr; 30(15):3763-70. PubMed ID: 2015231 [TBL] [Abstract][Full Text] [Related]
9. Stabilization of the imidazole ring of His-195 at the active site of chloramphenicol acetyltransferase. Murray IA; Lewendon A; Shaw WV J Biol Chem; 1991 Jun; 266(18):11695-8. PubMed ID: 2050670 [TBL] [Abstract][Full Text] [Related]
10. Replacement of catalytic histidine-195 of chloramphenicol acetyltransferase: evidence for a general base role for glutamate. Lewendon A; Murray IA; Shaw WV; Gibbs MR; Leslie AG Biochemistry; 1994 Feb; 33(7):1944-50. PubMed ID: 7906544 [TBL] [Abstract][Full Text] [Related]
11. Site-directed mutagenesis of the lipoate acetyltransferase of Escherichia coli. Russell GC; Guest JR Proc Biol Sci; 1991 Feb; 243(1307):155-60. PubMed ID: 1676519 [TBL] [Abstract][Full Text] [Related]
12. Analysis of the binding of 1,3-diacetylchloramphenicol to chloramphenicol acetyltransferase by isotope-edited 1H NMR and site-directed mutagenesis. Derrick JP; Lian LY; Roberts GC; Shaw WV Biochemistry; 1992 Sep; 31(35):8191-5. PubMed ID: 1525158 [TBL] [Abstract][Full Text] [Related]
13. Acetyl coenzyme A binding by chloramphenicol acetyltransferase: long-range electrostatic determinants of coenzyme A recognition. Day PJ; Shaw WV; Gibbs MR; Leslie AG Biochemistry; 1992 May; 31(17):4198-205. PubMed ID: 1567867 [TBL] [Abstract][Full Text] [Related]
14. Disruption of active site interactions with pyridoxal 5'-phosphate and substrates by conservative replacements in the glycine-rich loop of Escherichia coli D-serine dehydratase. Marceau M; Lewis SD; Kojiro CL; Mountjoy K; Shafer JA J Biol Chem; 1990 Nov; 265(33):20421-9. PubMed ID: 2243098 [TBL] [Abstract][Full Text] [Related]
15. Formation of mixed disulfide adducts at cysteine-281 of the lactose repressor protein affects operator and inducer binding parameters. Daly TJ; Olson JS; Matthews KS Biochemistry; 1986 Sep; 25(19):5468-74. PubMed ID: 3535878 [TBL] [Abstract][Full Text] [Related]
16. Acetyl coenzyme A binding by chloramphenicol acetyltransferase. Hydrophobic determinants of recognition and catalysis. Day PJ; Shaw WV J Biol Chem; 1992 Mar; 267(8):5122-7. PubMed ID: 1544895 [TBL] [Abstract][Full Text] [Related]
17. Purification and some properties of a chloramphenicol acetyltransferase mediated by plasmids from Vibrio anguillarum. Masuyoshi S; Okubo T; Inoue M; Mitsuhashi S J Biochem; 1988 Jul; 104(1):131-5. PubMed ID: 3146569 [TBL] [Abstract][Full Text] [Related]
18. The reactions of Escherichia coli citrate synthase with the sulfhydryl reagents 5,5'-dithiobis-(2-nitrobenzoic acid) and 4,4'-dithiodipyridine. Talgoy MM; Bell AW; Duckworth HW Can J Biochem; 1979 Jun; 57(6):822-33. PubMed ID: 38891 [TBL] [Abstract][Full Text] [Related]
19. Identification and characterization of a critical region in the glycogen synthase from Escherichia coli. Yep A; Ballicora MA; Sivak MN; Preiss J J Biol Chem; 2004 Feb; 279(9):8359-67. PubMed ID: 14665620 [TBL] [Abstract][Full Text] [Related]
20. Role of cysteine residues in glutathione synthetase from Escherichia coli B. Chemical modification and oligonucleotide site-directed mutagenesis. Kato H; Tanaka T; Nishioka T; Kimura A; Oda J J Biol Chem; 1988 Aug; 263(24):11646-51. PubMed ID: 3042775 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]