BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 22682891)

  • 1. Initiation and progression of mechanical damage in the intervertebral disc under cyclic loading using continuum damage mechanics methodology: A finite element study.
    Qasim M; Natarajan RN; An HS; Andersson GB
    J Biomech; 2012 Jul; 45(11):1934-40. PubMed ID: 22682891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic denaturation versus excessive fatigue loading degeneration: Effects on the time-dependent response of the intervertebral disc.
    Nikkhoo M; Wang JL; Cheng CH; Parnianpour M; Khalaf K
    J Biomech; 2024 Jun; 171():112159. PubMed ID: 38852480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain rate-dependent failure mechanics of the intervertebral disc under tension/compression and constitutive analysis.
    Liu Q; Zhang HL; Zhang YL; Wang S; Feng XQ; Li K; Zhang CQ
    Med Eng Phys; 2024 May; 127():104158. PubMed ID: 38692761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of compressive and tensile forces on glucose concentration and cell viability within the intervertebral disc: A finite element study.
    Zheng LD; Lv HY; Yang YT; Yuan Q; Cao YT; Zhang K; Zhu R
    Med Eng Phys; 2024 Jul; 129():104189. PubMed ID: 38906572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid finite-discrete element method for modelling cracking processes in sandy mudstone containing a single edge-flaw under cyclic dynamic loading.
    Zhang X; Xu W; Zhang X; Yu Y; Xu C
    Sci Rep; 2024 Jul; 14(1):15346. PubMed ID: 38961201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlocal damage evaluation of a sigmoid-based damage model for fibrous biological soft tissues.
    Suárez S; López-Campos JA; Fernández JR; Segade A
    Biomech Model Mechanobiol; 2024 Apr; 23(2):655-674. PubMed ID: 38158483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A finite element model for predicting impact-induced damage to a skin simulant.
    Imam SA; Hughes AC; Carré M; Driscoll H; Winwood K; Venkatraman P; Allen T
    Sci Rep; 2024 Jun; 14(1):12810. PubMed ID: 38834566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale Static Compressive Damage Characteristics of Kiwifruit Based on the Finite Element Method.
    Zhu Y; Zhu L; Guo W; Han Z; Wang R; Zhang W; Yuan Y; Gao J; Liu S
    Foods; 2024 Mar; 13(5):. PubMed ID: 38472898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite-element modeling of viscoelastic cells during high-frequency cyclic strain.
    Milner JS; Grol MW; Beaucage KL; Dixon SJ; Holdsworth DW
    J Funct Biomater; 2012 Mar; 3(1):209-24. PubMed ID: 24956525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the use of constrained reactive mixtures of solids to model finite deformation isothermal elastoplasticity and elastoplastic damage mechanics.
    Zimmerman BK; Jiang D; Weiss JA; Timmins LH; Ateshian GA
    J Mech Phys Solids; 2021 Oct; 155():. PubMed ID: 34675447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the mechanics of growing thin biological membranes.
    Rausch MK; Kuhl E
    J Mech Phys Solids; 2014 Feb; 63():128-140. PubMed ID: 24563551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the etiopathogenesis of lumbar intervertebral disc herniation: From clinical evidence to basic scientific research.
    Zhou M; Theologis AA; O'Connell GD
    JOR Spine; 2024 Mar; 7(1):e1289. PubMed ID: 38222810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lumbar Intervertebral Disc Herniation: Annular Closure Devices and Key Design Requirements.
    Guardado AA; Baker A; Weightman A; Hoyland JA; Cooper G
    Bioengineering (Basel); 2022 Jan; 9(2):. PubMed ID: 35200401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Challenges in Tissue Engineering for the Spine.
    Castro APG
    Bioengineering (Basel); 2021 Feb; 8(2):. PubMed ID: 33671854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Strain Rates on Failure of Mechanical Properties of Lumbar Intervertebral Disc Under Flexion.
    Li K; Zhang SJ; Du CF; Zhao JZ; Liu Q; Zhang CQ; Sun YF
    Orthop Surg; 2020 Dec; 12(6):1980-1989. PubMed ID: 33200562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element comparison between the human and the ovine lumbar intervertebral disc.
    Casaroli G; Villa T; Galbusera F
    Muscles Ligaments Tendons J; 2017; 7(4):510-519. PubMed ID: 29721452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A more realistic disc herniation model incorporating compression, flexion and facet-constrained shear: a mechanical and microstructural analysis. Part I: Low rate loading.
    Wade KR; Schollum ML; Robertson PA; Thambyah A; Broom ND
    Eur Spine J; 2017 Oct; 26(10):2616-2628. PubMed ID: 28785999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Prediction of the Mechanical Failure of the Intervertebral Disc under Complex Loading Conditions.
    Casaroli G; Villa T; Bassani T; Berger-Roscher N; Wilke HJ; Galbusera F
    Materials (Basel); 2017 Jan; 10(1):. PubMed ID: 28772392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An anisotropic multiphysics damage model with application to annulus fibrosus.
    Gao X; Zhu Q; Gu W
    J Biomech; 2017 Aug; 61():88-93. PubMed ID: 28764957
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.