These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 22682891)

  • 61. Influence of Complex Loading Conditions on Intervertebral Disc Failure.
    Berger-Roscher N; Casaroli G; Rasche V; Villa T; Galbusera F; Wilke HJ
    Spine (Phila Pa 1976); 2017 Jan; 42(2):E78-E85. PubMed ID: 27187053
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Compression-induced degeneration of the intervertebral disc: an in vivo mouse model and finite-element study.
    Lotz JC; Colliou OK; Chin JR; Duncan NA; Liebenberg E
    Spine (Phila Pa 1976); 1998 Dec; 23(23):2493-506. PubMed ID: 9854748
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effect of Spiral Nucleus Implant Parameters on the Compressive Biomechanics of Lumbar Intervertebral Disc.
    Du CF; Liu CJ; Huang YP; Wang X
    World Neurosurg; 2020 Feb; 134():e878-e884. PubMed ID: 31733385
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Stress analysis of the disc adjacent to interbody fusion in lumbar spine.
    Chen CS; Cheng CK; Liu CL; Lo WH
    Med Eng Phys; 2001 Sep; 23(7):483-91. PubMed ID: 11574255
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Influence of different artificial disc kinematics on spine biomechanics.
    Zander T; Rohlmann A; Bergmann G
    Clin Biomech (Bristol, Avon); 2009 Feb; 24(2):135-42. PubMed ID: 19121822
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method.
    Guo LX; Li R; Zhang M
    Acta Bioeng Biomech; 2016; 18(2):19-29. PubMed ID: 27406902
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Biomechanical investigation on the influence of the regional material degeneration of an intervertebral disc in a lower lumbar spinal unit: A finite element study.
    Masni-Azian ; Tanaka M
    Comput Biol Med; 2018 Jul; 98():26-38. PubMed ID: 29758454
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Nonlinear finite-element analysis and biomechanical evaluation of the lumbar spine.
    Wong C; Gehrchen PM; Darvann T; Kiaer T
    IEEE Trans Med Imaging; 2003 Jun; 22(6):742-6. PubMed ID: 12872949
    [TBL] [Abstract][Full Text] [Related]  

  • 69. On prediction of the compressive strength and failure patterns of human vertebrae using a quasi-brittle continuum damage finite element model.
    Nakhli Z; Hatira FB; Pithioux M; Chabrand P; Saanouni K
    Acta Bioeng Biomech; 2019; 21(2):143-151. PubMed ID: 31741469
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effect of annular incision type on the change in biomechanical properties in a herniated lumbar intervertebral disc.
    Natarajan RN; Andersson GB; Patwardhan AG; Verma S
    J Biomech Eng; 2002 Apr; 124(2):229-36. PubMed ID: 12002133
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Posterior facet load changes in adjacent segments due to moderate and severe degeneration in C5-C6 disc: a poroelastic C3-T1 finite element model study.
    Hussain M; Natarajan RN; Chaudhary G; An HS; Andersson GB
    J Spinal Disord Tech; 2012 Jun; 25(4):218-25. PubMed ID: 22652989
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Biomechanical effects of over lordotic curvature after spinal fusion on adjacent intervertebral discs under continuous compressive load.
    Wang W; Pei B; Pei Y; Li H; Lu S; Wu X; Wu N; Shi Z; Hao Y; Fan Y
    Clin Biomech (Bristol, Avon); 2020 Mar; 73():149-156. PubMed ID: 31986460
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc.
    Dooris AP; Goel VK; Grosland NM; Gilbertson LG; Wilder DG
    Spine (Phila Pa 1976); 2001 Mar; 26(6):E122-9. PubMed ID: 11246394
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Biomechanics of load-bearing of the intervertebral disc: an experimental and finite element model.
    Martinez JB; Oloyede VO; Broom ND
    Med Eng Phys; 1997 Mar; 19(2):145-56. PubMed ID: 9203149
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Influence of Dynesys system screw profile on adjacent segment and screw.
    Liu CL; Zhong ZC; Shih SL; Hung C; Lee YE; Chen CS
    J Spinal Disord Tech; 2010 Aug; 23(6):410-7. PubMed ID: 20683426
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A model to study the disc degeneration process.
    Natarajan RN; Ke JH; Andersson GB
    Spine (Phila Pa 1976); 1994 Feb; 19(3):259-65. PubMed ID: 8171355
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Comparative role of disc degeneration and ligament failure on functional mechanics of the lumbar spine.
    Ellingson AM; Shaw MN; Giambini H; An KN
    Comput Methods Biomech Biomed Engin; 2016; 19(9):1009-18. PubMed ID: 26404463
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The Effects of Physiological Biomechanical Loading on Intradiscal Pressure and Annulus Stress in Lumbar Spine: A Finite Element Analysis.
    Zahari SN; Latif MJA; Rahim NRA; Kadir MRA; Kamarul T
    J Healthc Eng; 2017; 2017():9618940. PubMed ID: 29065672
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Finite element analyses of human vertebral bodies embedded in polymethylmethalcrylate or loaded via the hyperelastic intervertebral disc models provide equivalent predictions of experimental strength.
    Lu Y; Maquer G; Museyko O; Püschel K; Engelke K; Zysset P; Morlock M; Huber G
    J Biomech; 2014 Jul; 47(10):2512-6. PubMed ID: 24818795
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A comparative study on the mechanical behavior of intervertebral disc using hyperelastic finite element model.
    Xie F; Zhou H; Zhao W; Huang L
    Technol Health Care; 2017 Jul; 25(S1):177-187. PubMed ID: 28582905
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.