BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 2268299)

  • 21. Differences between the reactivities of two pyridine nucleotides in the rapid reduction process and the reoxidation process of adrenodoxin reductase.
    Sugiyama T; Miura R; Yamano T
    J Biochem; 1979 Jul; 86(1):213-23. PubMed ID: 39065
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Composition of partially purified NADPH oxidase from pig neutrophils.
    Bellavite P; Jones OT; Cross AR; Papini E; Rossi F
    Biochem J; 1984 Nov; 223(3):639-48. PubMed ID: 6439185
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms and meaning of cellular oxygen sensing in the organism.
    Acker H
    Respir Physiol; 1994 Jan; 95(1):1-10. PubMed ID: 8153448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectrophotometric and fluorometric studies on the mechanism of chemoreception in the carotid body.
    Mills E
    Fed Proc; 1972; 31(5):1394-8. PubMed ID: 4341385
    [No Abstract]   [Full Text] [Related]  

  • 25. NADPH oxidase: a universal oxygen sensor?
    Jones RD; Hancock JT; Morice AH
    Free Radic Biol Med; 2000 Sep; 29(5):416-24. PubMed ID: 11020663
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carotid body type I cells engage flavoprotein and Pin1 for oxygen sensing.
    Bernardini A; Wolf A; Brockmeier U; Riffkin H; Metzen E; Acker-Palmer A; Fandrey J; Acker H
    Am J Physiol Cell Physiol; 2020 Apr; 318(4):C719-C731. PubMed ID: 31967857
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Fluorescence spectral characteristics of human blood and its endogenous fluorophores].
    Li BH; Zhang ZX; Xie SS; Chen R
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Jul; 26(7):1310-3. PubMed ID: 17020047
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A common oxygen sensor regulates the sensory discharge and glomus cell HIF-1alpha in the rat carotid body.
    Lahiri S; Antosiewicz J; Pokorski M
    J Physiol Pharmacol; 2007 Nov; 58 Suppl 5(Pt 1):327-33. PubMed ID: 18204143
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Properties of a superoxide anion-generating microsomal NADH oxidoreductase, a potential pulmonary artery PO2 sensor.
    Mohazzab KM; Wolin MS
    Am J Physiol; 1994 Dec; 267(6 Pt 1):L823-31. PubMed ID: 7810686
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ; Scrutton NS; Munro AW
    Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simultaneous photometric determination of oxygen consumption and NAD(P)H formation or disappearance using a continuous flow cuvette.
    Dânşoreanu MM; Telia MI
    Methods Enzymol; 1986; 122():161-9. PubMed ID: 3702687
    [No Abstract]   [Full Text] [Related]  

  • 32. Structure of the NADPH-oxidase: membrane components.
    Segal AW
    Immunodeficiency; 1993; 4(1-4):167-79. PubMed ID: 8167695
    [No Abstract]   [Full Text] [Related]  

  • 33. NADPH-binding component of the superoxide-generating oxidase in unstimulated neutrophils and the neutrophils from the patients with chronic granulomatous disease.
    Umei T; Takeshige K; Minakami S
    Biochem J; 1987 Apr; 243(2):467-72. PubMed ID: 3632631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The heme component of the neutrophil NADPH oxidase complex is a target for aryliodonium compounds.
    Doussiere J; Gaillard J; Vignais PV
    Biochemistry; 1999 Mar; 38(12):3694-703. PubMed ID: 10090757
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of Ser457 of NADPH-cytochrome P450 oxidoreductase in catalysis and control of FAD oxidation-reduction potential.
    Shen AL; Kasper CB
    Biochemistry; 1996 Jul; 35(29):9451-9. PubMed ID: 8755724
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3.
    Sevrioukova I; Shaffer C; Ballou DP; Peterson JA
    Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxygen sensing in the carotid body.
    Gonzalez C; Vicario I; Almaraz L; Rigual R
    Biol Signals; 1995; 4(5):245-56. PubMed ID: 8704824
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pulmonary artery NADPH-oxidase is activated in hypoxic pulmonary vasoconstriction.
    Marshall C; Mamary AJ; Verhoeven AJ; Marshall BE
    Am J Respir Cell Mol Biol; 1996 Nov; 15(5):633-44. PubMed ID: 8918370
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellular distribution of oxygen sensor candidates-oxidases, cytochromes, K+-channels--in the carotid body.
    Kummer W; Yamamoto Y
    Microsc Res Tech; 2002 Nov; 59(3):234-42. PubMed ID: 12384967
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.