These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
46 related articles for article (PubMed ID: 22683332)
1. Thermodynamic study of the native and phosphorylated regulatory domain of the CFTR. Marasini C; Galeno L; Moran O Biochem Biophys Res Commun; 2012 Jul; 423(3):549-52. PubMed ID: 22683332 [TBL] [Abstract][Full Text] [Related]
2. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain. Howell LD; Borchardt R; Kole J; Kaz AM; Randak C; Cohn JA Biochem J; 2004 Feb; 378(Pt 1):151-9. PubMed ID: 14602047 [TBL] [Abstract][Full Text] [Related]
3. Cystic fibrosis transmembrane conductance regulator: the purified NBF1+R protein interacts with the purified NBF2 domain to form a stable NBF1+R/NBF2 complex while inducing a conformational change transmitted to the C-terminal region. Lu NT; Pedersen PL Arch Biochem Biophys; 2000 Mar; 375(1):7-20. PubMed ID: 10683244 [TBL] [Abstract][Full Text] [Related]
4. A SAXS-based ensemble model of the native and phosphorylated regulatory domain of the CFTR. Marasini C; Galeno L; Moran O Cell Mol Life Sci; 2013 Mar; 70(5):923-33. PubMed ID: 23052212 [TBL] [Abstract][Full Text] [Related]
5. Conformational and thermodynamic characterization of the molten globule state occurring during unfolding of cytochromes-c by weak salt denaturants. Qureshi SH; Moza B; Yadav S; Ahmad F Biochemistry; 2003 Feb; 42(6):1684-95. PubMed ID: 12578383 [TBL] [Abstract][Full Text] [Related]
6. Transmembrane domain of cystic fibrosis transmembrane conductance regulator: design, characterization, and secondary structure of synthetic peptides m1-m6. Wigley WC; Vijayakumar S; Jones JD; Slaughter C; Thomas PJ Biochemistry; 1998 Jan; 37(3):844-53. PubMed ID: 9454574 [TBL] [Abstract][Full Text] [Related]
7. Architecture of the cystic fibrosis transmembrane conductance regulator protein and structural changes associated with phosphorylation and nucleotide binding. Zhang L; Aleksandrov LA; Zhao Z; Birtley JR; Riordan JR; Ford RC J Struct Biol; 2009 Sep; 167(3):242-51. PubMed ID: 19524678 [TBL] [Abstract][Full Text] [Related]
8. Expression and characterization of the NBD1-R domain region of CFTR: evidence for subunit-subunit interactions. Neville DC; Rozanas CR; Tulk BM; Townsend RR; Verkman AS Biochemistry; 1998 Feb; 37(8):2401-9. PubMed ID: 9485388 [TBL] [Abstract][Full Text] [Related]
9. A unique molten globule state occurs during unfolding of cytochrome c by LiClO4 near physiological pH and temperature: structural and thermodynamic characterization. Moza B; Qureshi SH; Islam A; Singh R; Anjum F; Moosavi-Movahedi AA; Ahmad F Biochemistry; 2006 Apr; 45(14):4695-702. PubMed ID: 16584204 [TBL] [Abstract][Full Text] [Related]
10. Definition of a "functional R domain" of the cystic fibrosis transmembrane conductance regulator. Chen JM; Scotet V; Ferec C Mol Genet Metab; 2000; 71(1-2):245-9. PubMed ID: 11001817 [TBL] [Abstract][Full Text] [Related]
11. Secondary structure and temperature-induced unfolding and refolding of ribonuclease T1 in aqueous solution. A Fourier transform infrared spectroscopic study. Fabian H; Schultz C; Naumann D; Landt O; Hahn U; Saenger W J Mol Biol; 1993 Aug; 232(3):967-81. PubMed ID: 8355280 [TBL] [Abstract][Full Text] [Related]
12. pH and temperature-induced molten globule-like denatured states of equinatoxin II: a study by UV-melting, DSC, far- and near-UV CD spectroscopy, and ANS fluorescence. Poklar N; Lah J; Salobir M; Macek P; Vesnaver G Biochemistry; 1997 Nov; 36(47):14345-52. PubMed ID: 9398152 [TBL] [Abstract][Full Text] [Related]
13. Structural characterization of the pressure-denatured state and unfolding/refolding kinetics of staphylococcal nuclease by synchrotron small-angle X-ray scattering and Fourier-transform infrared spectroscopy. Panick G; Malessa R; Winter R; Rapp G; Frye KJ; Royer CA J Mol Biol; 1998 Jan; 275(2):389-402. PubMed ID: 9466917 [TBL] [Abstract][Full Text] [Related]
14. Stimulation of CFTR activity by its phosphorylated R domain. Winter MC; Welsh MJ Nature; 1997 Sep; 389(6648):294-6. PubMed ID: 9305845 [TBL] [Abstract][Full Text] [Related]
15. Dimerization-induced folding of MST1 SARAH and the influence of the intrinsically unstructured inhibitory domain: low thermodynamic stability of monomer. Constantinescu Aruxandei D; Makbul C; Koturenkiene A; Lüdemann MB; Herrmann C Biochemistry; 2011 Dec; 50(51):10990-1000. PubMed ID: 22112013 [TBL] [Abstract][Full Text] [Related]
16. NMR spectroscopy to study the dynamics and interactions of CFTR. Kanelis V; Chong PA; Forman-Kay JD Methods Mol Biol; 2011; 741():377-403. PubMed ID: 21594798 [TBL] [Abstract][Full Text] [Related]
17. Molecular basis of cooperativity in protein folding. V. Thermodynamic and structural conditions for the stabilization of compact denatured states. Xie D; Freire E Proteins; 1994 Aug; 19(4):291-301. PubMed ID: 7984625 [TBL] [Abstract][Full Text] [Related]
18. Computational studies reveal phosphorylation-dependent changes in the unstructured R domain of CFTR. Hegedus T; Serohijos AW; Dokholyan NV; He L; Riordan JR J Mol Biol; 2008 May; 378(5):1052-63. PubMed ID: 18423665 [TBL] [Abstract][Full Text] [Related]
19. The conformational manifold of ferricytochrome c explored by visible and far-UV electronic circular dichroism spectroscopy. Hagarman A; Duitch L; Schweitzer-Stenner R Biochemistry; 2008 Sep; 47(36):9667-77. PubMed ID: 18702508 [TBL] [Abstract][Full Text] [Related]
20. Interhelical hydrogen bonds in the CFTR membrane domain. Therien AG; Grant FE; Deber CM Nat Struct Biol; 2001 Jul; 8(7):597-601. PubMed ID: 11427889 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]