BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 22683555)

  • 1. Influence of the lipid environment on valinomycin structure and cation complex formation.
    Halsey CM; Benham DA; JiJi RD; Cooley JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():200-6. PubMed ID: 22683555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep-UV resonance Raman analysis of the Rhodobacter capsulatus cytochrome bc₁complex reveals a potential marker for the transmembrane peptide backbone.
    Halsey CM; Oshokoya OO; Jiji RD; Cooley JW
    Biochemistry; 2011 Aug; 50(30):6531-8. PubMed ID: 21718040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Valinomycin and its interaction with ions in organic solvents, detergents, and lipids studied by Fourier transform IR spectroscopy.
    Jackson M; Mantsch HH
    Biopolymers; 1991 Sep; 31(10):1205-12. PubMed ID: 1790298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular structure and mechanisms of action of cyclic and linear ion transport antibiotics.
    Duax WL; Griffin JF; Langs DA; Smith GD; Grochulski P; Pletnev V; Ivanov V
    Biopolymers; 1996; 40(1):141-55. PubMed ID: 8541445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation and structure of the potassium complex of valinomycin in solution studied by Raman optical activity spectroscopy.
    Yamamoto S; Straka M; Watarai H; Bour P
    Phys Chem Chem Phys; 2010 Sep; 12(36):11021-32. PubMed ID: 20668727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous observation of peptide backbone lipid solvation and α-helical structure by deep-UV resonance Raman spectroscopy.
    Halsey CM; Xiong J; Oshokoya OO; Johnson JA; Shinde S; Beatty JT; Ghirlanda G; JiJi RD; Cooley JW
    Chembiochem; 2011 Sep; 12(14):2125-8. PubMed ID: 21796753
    [No Abstract]   [Full Text] [Related]  

  • 7. UVRR spectroscopic studies of valinomycin complex formation in different solvents.
    Ozdemir A; Lednev IK; Asher SA
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jan; 61(1-2):19-26. PubMed ID: 15556416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane.
    Gurtovenko AA; Vattulainen I
    J Phys Chem B; 2008 Feb; 112(7):1953-62. PubMed ID: 18225878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How Valinomycin Ionophores Enter and Transport K
    Su Z; Ran X; Leitch JJ; Schwan AL; Faragher R; Lipkowski J
    Langmuir; 2019 Dec; 35(51):16935-16943. PubMed ID: 31742409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring the backbone conformation of valinomycin by Raman optical activity.
    Yamamoto S; Watarai H; Bouř P
    Chemphyschem; 2011 Jun; 12(8):1509-18. PubMed ID: 21384485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of the presence of valinomycin on the interfacial tension of lecithin membrane.
    Petelska AD; Naumowicz M; Figaszewski ZA
    Colloids Surf B Biointerfaces; 2005 Aug; 44(2-3):158-62. PubMed ID: 16051474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potassium ion transport by valinomycin across a Hg-supported lipid bilayer.
    Becucci L; Moncelli MR; Naumann R; Guidelli R
    J Am Chem Soc; 2005 Sep; 127(38):13316-23. PubMed ID: 16173764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Structure of macrocyclic K+, Rb+-complexon of meso-valinomycin monohydrate, cyclo[-(D-Val-Hyi-Val-D-Hyi)3-].H2O, in a crystalline complex with dioxane by x-ray structural data].
    Pletnev VZ; Tsygannik IN; Fonarev IuD; Ivanov VT; Lengs DA; Grokhul'skiĭ P; Dukes VL
    Bioorg Khim; 1992 Jun; 18(6):794-801. PubMed ID: 1417998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of valinomycin by molecular dynamics studies.
    Shobana S; Vishveshwara S
    Indian J Biochem Biophys; 1991; 28(5-6):363-8. PubMed ID: 1812068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion-Pairing Mechanism for the Valinomycin-Mediated Transport of Potassium Ions across Phospholipid Bilayers.
    Su Z; Leitch JJ; Sek S; Lipkowski J
    Langmuir; 2021 Aug; 37(31):9613-9621. PubMed ID: 34323494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impedance analysis of phosphatidylcholine membranes modified with valinomycin.
    Naumowicz M; Kotynska J; Petelska A; Figaszewski Z
    Eur Biophys J; 2006 Feb; 35(3):239-46. PubMed ID: 16283290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1H NMR study of valinomycin conformation in a phospholipid bilayer.
    Feigenson GW; Meers PR
    Nature; 1980 Jan; 283(5744):313-4. PubMed ID: 7352006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of persistent α-helical content and discrete types of backbone disorder during a molten globule to ordered peptide transition via deep-UV resonance Raman spectroscopy.
    Brown MC; Mutter A; Koder RL; JiJi RD; Cooley JW
    J Raman Spectrosc; 2013 Jul; 44(7):957-962. PubMed ID: 27795611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Parallel factor analysis of multi-excitation ultraviolet resonance Raman spectra for protein secondary structure determination".
    Oshokoya OO; JiJi RD
    Anal Chim Acta; 2015 Sep; 892():59-68. PubMed ID: 26388475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structure of a valinomycin-hexaaquamagnesium trifluoromethanesulfonate compound.
    Fujita M; Kazerouni AM; Bacsa J
    Acta Crystallogr C Struct Chem; 2016 Aug; 72(Pt 8):627-33. PubMed ID: 27487337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.