These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 22683599)

  • 1. Molecular dynamics simulation of cation-phospholipid clustering in phospholipid bilayers: possible role in stalk formation during membrane fusion.
    Tsai HH; Lai WX; Lin HD; Lee JB; Juang WF; Tseng WH
    Biochim Biophys Acta; 2012 Nov; 1818(11):2742-55. PubMed ID: 22683599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca(2+) bridging of apposed phospholipid bilayers.
    Issa ZK; Manke CW; Jena BP; Potoff JJ
    J Phys Chem B; 2010 Oct; 114(41):13249-54. PubMed ID: 20836527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of ionic liquids in aqueous solution on bacterial plasma membranes studied with molecular dynamics simulations.
    Lim GS; Zidar J; Cheong DW; Jaenicke S; Klähn M
    J Phys Chem B; 2014 Sep; 118(35):10444-59. PubMed ID: 25153890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of ion interactions with a cholesterol-rich bilayer.
    Mao L; Yang L; Zhang Q; Jiang H; Yang H
    Biochem Biophys Res Commun; 2015 Dec 4-11; 468(1-2):125-9. PubMed ID: 26529547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanism of Ca(2+)-catalyzed fusion of phospholipid micelles.
    Tsai HH; Juang WF; Chang CM; Hou TY; Lee JB
    Biochim Biophys Acta; 2013 Nov; 1828(11):2729-38. PubMed ID: 23911761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Na+, K+, and Ca2+ on the structures of anionic lipid bilayers and biological implication.
    Yang H; Xu Y; Gao Z; Mao Y; Du Y; Jiang H
    J Phys Chem B; 2010 Dec; 114(50):16978-88. PubMed ID: 21126040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fusion-relevant changes in lipid shape of hydrated cholesterol hemisuccinate induced by pH and counterion species.
    Klasczyk B; Panzner S; Lipowsky R; Knecht V
    J Phys Chem B; 2010 Nov; 114(46):14941-6. PubMed ID: 20977247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bilayer mixing, fusion, and lysis following the interaction of populations of cationic and anionic phospholipid bilayer vesicles.
    Pantazatos DP; Pantazatos SP; MacDonald RC
    J Membr Biol; 2003 Jul; 194(2):129-39. PubMed ID: 14502437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous solutions at the interface with phospholipid bilayers.
    Berkowitz ML; Vácha R
    Acc Chem Res; 2012 Jan; 45(1):74-82. PubMed ID: 21770470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding Mechanisms of Amyloid-like Peptides to Lipid Bilayers and Effects of Divalent Cations.
    Yang Y; Jalali S; Nilsson BL; Dias CL
    ACS Chem Neurosci; 2021 Jun; 12(11):2027-2035. PubMed ID: 33973758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Swelling of phospholipid membranes by divalent metal ions depends on the location of the ions in the bilayers.
    Alsop RJ; Maria Schober R; Rheinstädter MC
    Soft Matter; 2016 Aug; 12(32):6737-48. PubMed ID: 27453289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of calcium on the properties of charged phospholipid bilayers.
    Pedersen UR; Leidy C; Westh P; Peters GH
    Biochim Biophys Acta; 2006 May; 1758(5):573-82. PubMed ID: 16730642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coarse-grained molecular dynamics simulation of cation distribution profiles on negatively charged lipid membranes during phase separation.
    Higuchi Y; Bohinc K; Reščič J; Shimokawa N; Ito H
    Soft Matter; 2023 May; 19(20):3640-3651. PubMed ID: 37162535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane.
    Gurtovenko AA; Vattulainen I
    J Phys Chem B; 2008 Feb; 112(7):1953-62. PubMed ID: 18225878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detergent-mediated formation of polymer-supported phospholipid bilayers.
    Kataoka-Hamai C; Higuchi M; Iwai H; Miyahara Y
    Langmuir; 2010 Sep; 26(18):14600-5. PubMed ID: 20726608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of polyethylene glycol and calcium-mediated membrane fusion.
    Pannuzzo M; De Jong DH; Raudino A; Marrink SJ
    J Chem Phys; 2014 Mar; 140(12):124905. PubMed ID: 24697479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of water hydrating the galactolipid and phospholipid bilayers: a molecular dynamics simulation study.
    Markiewicz M; Baczyński K; Pasenkiewicz-Gierula M
    Acta Biochim Pol; 2015; 62(3):475-81. PubMed ID: 26291044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Characterization of a Cation-Selective, Self-Assembled Peptide Pore in Planar Phospholipid Bilayers.
    Deplazes E; Hartmann LM; Cranfield CG; Garcia A
    J Phys Chem Lett; 2020 Oct; 11(19):8152-8156. PubMed ID: 32902292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Curvature Matters: Modeling Calcium Binding to Neutral and Anionic Phospholipid Bilayers.
    Yesylevskyy S; Martinez-Seara H; Jungwirth P
    J Phys Chem B; 2023 May; 127(20):4523-4531. PubMed ID: 37191140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.