BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 22683620)

  • 1. Estimation of internal exposure to uranium with uncertainty from urinalysis data using the InDEP computer code.
    Anderson JL; Apostoaei AI; Thomas BA
    Radiat Prot Dosimetry; 2013 Jan; 153(1):64-73. PubMed ID: 22683620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of internal exposure to enriched uranium at a former gaseous diffusion plant.
    Anderson JL; Spitz HB; Yiin JH
    Health Phys; 2007 Dec; 93(6):636-44. PubMed ID: 17993844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Internal exposure to uranium in a pooled cohort of gaseous diffusion plant workers.
    Anderson JL; Apostoaei AI; Yiin JH; Fleming DA; Tseng CY; Chen PH
    Radiat Prot Dosimetry; 2016 Mar; 168(4):471-7. PubMed ID: 26113578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive dose reconstruction methodology for former rocketdyne/atomics international radiation workers.
    Boice JD; Leggett RW; Ellis ED; Wallace PW; Mumma M; Cohen SS; Brill AB; Chadda B; Boecker BB; Yoder RC; Eckerman KF
    Health Phys; 2006 May; 90(5):409-30. PubMed ID: 16607174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Internal dosimetry of uranium isotopes using Bayesian inference methods.
    Little TT; Miller G; Guilmette R
    Radiat Prot Dosimetry; 2003; 105(1-4):413-6. PubMed ID: 14526999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An intake prior for the Bayesian analysis of plutonium and uranium exposures in an epidemiology study.
    Puncher M; Birchall A; Bull RK
    Radiat Prot Dosimetry; 2014 Dec; 162(3):306-15. PubMed ID: 24191121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collective dosimetry to distinguish occupational exposure to natural uranium from alimentary uranium background in bioassay measurements.
    Davesne E; Blanchin N; Chojnacki E; Touri L; Ruffin M; Blanchardon E; Franck D
    Int J Radiat Biol; 2014 Nov; 90(11):1048-54. PubMed ID: 24844375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating active bone marrow dose from occupational exposure to uranium at a former gaseous diffusion plant.
    Anderson JL; Spitz HB; Yiin JH
    Health Phys; 2007 Aug; 93(2):113-9. PubMed ID: 17622815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioassays in workers exposed to long time random intakes.
    Sánchez-León G; López MA; Moraleda M; Rodríguez-Díaz JM
    Appl Radiat Isot; 2022 Feb; 180():110057. PubMed ID: 34896900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of protracted low-level exposure to uranium in the workplace: A comparison of two approaches.
    Guseva Canu I; Laurier D; Caër-Lorho S; Samson E; Timarche M; Auriol B; Bérard P; Collomb P; Quesne B; Blanchardon E
    Int J Hyg Environ Health; 2010 Jul; 213(4):270-7. PubMed ID: 20363186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uranium dose assessment: a Bayesian approach to the problem of dietary background.
    Little T; Miller G; Guilmette R; Bertelli L
    Radiat Prot Dosimetry; 2007; 127(1-4):333-8. PubMed ID: 17623684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of exposure to depleted uranium.
    Roth P; Höllriegl V; Werner E; Schramel P
    Radiat Prot Dosimetry; 2003; 105(1-4):157-61. PubMed ID: 14526948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bayesian analysis of uncertainties on lung doses resulting from occupational exposures to uranium.
    Puncher M; Birchall A; Bull RK
    Radiat Prot Dosimetry; 2013 Sep; 156(2):131-40. PubMed ID: 23528329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioassay and alpha spectrometry in indirect monitoring of Spanish workers exposed to enriched uranium.
    Sierra I; Hernández C; Albendea P; López MA
    Arh Hig Rada Toksikol; 2019 Sep; 70(3):201-206. PubMed ID: 32597125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A statistical model for reconstruction of historical internal doses for uranium workers.
    Kravchik T; German U
    Radiat Prot Dosimetry; 2009 Sep; 136(2):87-94. PubMed ID: 19687132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Method for analyzing left-censored bioassay data in large cohort studies.
    Anderson JL; Apostoaei AI
    J Expo Sci Environ Epidemiol; 2017 Jan; 27(1):1-6. PubMed ID: 25967066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uranium bioassay--beyond urinalysis.
    Karpas Z
    Health Phys; 2001 Oct; 81(4):460-3. PubMed ID: 11569642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility studies for assessing internal exposure to 233U.
    Mehta DJ; Sharma RC; Ramanujam A; Haridasan TK; Sawant PD; Rathinam M
    Radiat Prot Dosimetry; 2003; 105(1-4):365-8. PubMed ID: 14526988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bayesian hierarchical approach to account for left-censored and missing radiation doses prone to classical measurement error when analyzing lung cancer mortality due to γ-ray exposure in the French cohort of uranium miners.
    Belloni M; Guihenneuc C; Rage E; Ancelet S
    Radiat Environ Biophys; 2020 Aug; 59(3):423-437. PubMed ID: 32567014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uranium in vitro bioassay action level used to screen workers for chronic inhalation intakes of uranium mill tailings.
    Reif RH; Turner JB; Carlson DS
    Health Phys; 1992 Oct; 63(4):398-401. PubMed ID: 1526780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.