These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 22683766)
1. Visualization of sub-daily skeletal growth patterns in massive Porites corals grown in Sr-enriched seawater. Shirai K; Sowa K; Watanabe T; Sano Y; Nakamura T; Clode P J Struct Biol; 2012 Oct; 180(1):47-56. PubMed ID: 22683766 [TBL] [Abstract][Full Text] [Related]
2. Understanding cold bias: Variable response of skeletal Sr/Ca to seawater pCO2 in acclimated massive Porites corals. Cole C; Finch A; Hintz C; Hintz K; Allison N Sci Rep; 2016 May; 6():26888. PubMed ID: 27241795 [TBL] [Abstract][Full Text] [Related]
3. Effects of acidified seawater on coral calcification and symbiotic algae on the massive coral Porites australiensis. Iguchi A; Ozaki S; Nakamura T; Inoue M; Tanaka Y; Suzuki A; Kawahata H; Sakai K Mar Environ Res; 2012 Feb; 73():32-6. PubMed ID: 22115919 [TBL] [Abstract][Full Text] [Related]
4. Regional decline in growth rates of massive Porites corals in Southeast Asia. Tanzil JT; Brown BE; Dunne RP; Lee JN; Kaandorp JA; Todd PA Glob Chang Biol; 2013 Oct; 19(10):3011-23. PubMed ID: 23744603 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous extension of both basic microstructural components in scleractinian coral skeleton during night and daytime, visualized by in situ 86Sr pulse labeling. Domart-Coulon I; Stolarski J; Brahmi C; Gutner-Hoch E; Janiszewska K; Shemesh A; Meibom A J Struct Biol; 2014 Jan; 185(1):79-88. PubMed ID: 24511631 [TBL] [Abstract][Full Text] [Related]
6. Needle-like grains across growth lines in the coral skeleton of Porites lobata. Motai S; Nagai T; Sowa K; Watanabe T; Sakamoto N; Yurimoto H; Kawano J J Struct Biol; 2012 Dec; 180(3):389-93. PubMed ID: 23041294 [TBL] [Abstract][Full Text] [Related]
7. Heavy metal contents in growth bands of Porites corals: record of anthropogenic and human developments from the Jordanian Gulf of Aqaba. Al-Rousan SA; Al-Shloul RN; Al-Horani FA; Abu-Hilal AH Mar Pollut Bull; 2007 Dec; 54(12):1912-22. PubMed ID: 17961605 [TBL] [Abstract][Full Text] [Related]
8. Growth of Western Australian corals in the anthropocene. Cooper TF; O'Leary RA; Lough JM Science; 2012 Feb; 335(6068):593-6. PubMed ID: 22301320 [TBL] [Abstract][Full Text] [Related]
9. Skeletal structure and progression of growth anomalies in Porites australiensis in Okinawa, Japan. Yasuda N; Nakano Y; Yamashiro H; Hidaka M Dis Aquat Organ; 2012 Jan; 97(3):237-47. PubMed ID: 22422094 [TBL] [Abstract][Full Text] [Related]
10. Biochemical characterization of the skeletal matrix of the massive coral, Porites australiensis - The saccharide moieties and their localization. Takeuchi T; Plasseraud L; Ziegler-Devin I; Brosse N; Shinzato C; Satoh N; Marin F J Struct Biol; 2018 Sep; 203(3):219-229. PubMed ID: 29859330 [TBL] [Abstract][Full Text] [Related]
11. Skeletal extension and calcification of reef-building corals in the central Indian Ocean. Morgan KM; Kench PS Mar Environ Res; 2012 Oct; 81():78-82. PubMed ID: 22925734 [TBL] [Abstract][Full Text] [Related]
12. Coral Sr/Ca-based sea surface temperature and air temperature variability from the inshore and offshore corals in the Seribu Islands, Indonesia. Cahyarini SY; Zinke J; Troelstra S; Suharsono ; Aldrian E; Hoeksema BW Mar Pollut Bull; 2016 Sep; 110(2):694-700. PubMed ID: 27181035 [TBL] [Abstract][Full Text] [Related]
13. Phosphorus in cold-water corals as a proxy for seawater nutrient chemistry. Montagna P; McCulloch M; Taviani M; Mazzoli C; Vendrell B Science; 2006 Jun; 312(5781):1788-91. PubMed ID: 16794077 [TBL] [Abstract][Full Text] [Related]
14. Morphological plasticity of the coral skeleton under CO2-driven seawater acidification. Tambutté E; Venn AA; Holcomb M; Segonds N; Techer N; Zoccola D; Allemand D; Tambutté S Nat Commun; 2015 Jun; 6():7368. PubMed ID: 26067341 [TBL] [Abstract][Full Text] [Related]
15. Coral biomineralization: A focus on intra-skeletal organic matrix and calcification. Falini G; Fermani S; Goffredo S Semin Cell Dev Biol; 2015 Oct; 46():17-26. PubMed ID: 26344100 [TBL] [Abstract][Full Text] [Related]
16. Microscopic observation of symbiotic and aposymbiotic juvenile corals in nutrient-enriched seawater. Tanaka Y; Iguchi A; Inoue M; Mori C; Sakai K; Suzuki A; Kawahata H; Nakamura T Mar Pollut Bull; 2013 Mar; 68(1-2):93-8. PubMed ID: 23324544 [TBL] [Abstract][Full Text] [Related]
17. Differences in physiological response to increased seawater temperature in nearshore and offshore corals in northern Vietnam. Faxneld S; Jörgensen TL; Nguyen ND; Nyström M; Tedengren M Mar Environ Res; 2011 Apr; 71(3):225-33. PubMed ID: 21324522 [TBL] [Abstract][Full Text] [Related]
18. In vivo light-microscopic documentation for primary calcification processes in the hermatypic coral Stylophora pistillata. Raz-Bahat M; Erez J; Rinkevich B Cell Tissue Res; 2006 Aug; 325(2):361-8. PubMed ID: 16568301 [TBL] [Abstract][Full Text] [Related]
19. Biotic control of skeletal growth by scleractinian corals in aragonite-calcite seas. Higuchi T; Fujimura H; Yuyama I; Harii S; Agostini S; Oomori T PLoS One; 2014; 9(3):e91021. PubMed ID: 24609012 [TBL] [Abstract][Full Text] [Related]
20. Skeletal microstructure of Galaxea fascicularis exsert septa: a high-resolution SEM study. Clode PL; Marshall AT Biol Bull; 2003 Apr; 204(2):146-54. PubMed ID: 12700145 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]