These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 22683828)
1. Modeling the transport and retention of nC60 nanoparticles in the subsurface under different release scenarios. Bai C; Li Y J Contam Hydrol; 2012 Aug; 136-137():43-55. PubMed ID: 22683828 [TBL] [Abstract][Full Text] [Related]
2. Time series analysis of contaminant transport in the subsurface: applications to conservative tracer and engineered nanomaterials. Bai C; Li Y J Contam Hydrol; 2014 Aug; 164():153-62. PubMed ID: 24987973 [TBL] [Abstract][Full Text] [Related]
3. Transport and retention of fullerene (nC60) nanoparticles in unsaturated porous media: effects of solution chemistry and solid phase coating. Chen L; Sabatini DA; Kibbey TC J Contam Hydrol; 2012 Sep; 138-139():104-12. PubMed ID: 22858671 [TBL] [Abstract][Full Text] [Related]
4. Transport and retention of fullerene nanoparticles in natural soils. Wang Y; Li Y; Kim H; Walker SL; Abriola LM; Pennell KD J Environ Qual; 2010; 39(6):1925-33. PubMed ID: 21284289 [TBL] [Abstract][Full Text] [Related]
5. Fate and risks of nanomaterials in aquatic and terrestrial environments. Batley GE; Kirby JK; McLaughlin MJ Acc Chem Res; 2013 Mar; 46(3):854-62. PubMed ID: 22759090 [TBL] [Abstract][Full Text] [Related]
6. Analysis of the fate and transport of nC₆₀ nanoparticles in the subsurface using response surface methodology. Bai C; Eskridge KM; Li Y J Contam Hydrol; 2013 Sep; 152():60-9. PubMed ID: 23880318 [TBL] [Abstract][Full Text] [Related]
7. Transport of fullerene nanoparticles (nC60) in saturated sand and sandy soil: controlling factors and modeling. Zhang L; Hou L; Wang L; Kan AT; Chen W; Tomson MB Environ Sci Technol; 2012 Jul; 46(13):7230-8. PubMed ID: 22681192 [TBL] [Abstract][Full Text] [Related]
8. Facilitated transport of 2,2',5,5'-polychlorinated biphenyl and phenanthrene by fullerene nanoparticles through sandy soil columns. Zhang L; Wang L; Zhang P; Kan AT; Chen W; Tomson MB Environ Sci Technol; 2011 Feb; 45(4):1341-8. PubMed ID: 21254786 [TBL] [Abstract][Full Text] [Related]
9. Conceptual modeling for identification of worst case conditions in environmental risk assessment of nanomaterials using nZVI and C60 as case studies. Grieger KD; Hansen SF; Sørensen PB; Baun A Sci Total Environ; 2011 Sep; 409(19):4109-24. PubMed ID: 21737121 [TBL] [Abstract][Full Text] [Related]
10. Characterizing photochemical transformation of aqueous nC60 under environmentally relevant conditions. Hwang YS; Li Q Environ Sci Technol; 2010 Apr; 44(8):3008-13. PubMed ID: 20337472 [TBL] [Abstract][Full Text] [Related]
11. Fate and biological effects of silver, titanium dioxide, and C60 (fullerene) nanomaterials during simulated wastewater treatment processes. Wang Y; Westerhoff P; Hristovski KD J Hazard Mater; 2012 Jan; 201-202():16-22. PubMed ID: 22154869 [TBL] [Abstract][Full Text] [Related]
12. Fullerene nanoparticles exhibit greater retention in freshwater sediment than in model porous media. Zhang W; Isaacson CW; Rattanaudompol US; Powell TB; Bouchard D Water Res; 2012 Jun; 46(9):2992-3004. PubMed ID: 22445188 [TBL] [Abstract][Full Text] [Related]
13. Effects of aqueous stable fullerene nanocrystals (nC60) on Daphnia magna: evaluation of sub-lethal reproductive responses and accumulation. Tao X; Fortner JD; Zhang B; He Y; Chen Y; Hughes JB Chemosphere; 2009 Dec; 77(11):1482-7. PubMed ID: 19897225 [TBL] [Abstract][Full Text] [Related]
14. Modeling arsenic sorption in the subsurface with a dual-site model. Qi Y; Donahoe RJ Ground Water; 2011; 49(2):219-26. PubMed ID: 20550587 [TBL] [Abstract][Full Text] [Related]
15. Engineered nanomaterials in soils and water: how do they behave and could they pose a risk to human health? Boxall AB; Tiede K; Chaudhry Q Nanomedicine (Lond); 2007 Dec; 2(6):919-27. PubMed ID: 18095854 [TBL] [Abstract][Full Text] [Related]
16. Effects of the preparation method and humic-acid modification on the mobility and contaminant-mobilizing capability of fullerene nanoparticles (nC60). Wang L; Hou L; Wang X; Chen W Environ Sci Process Impacts; 2014 May; 16(6):1282-9. PubMed ID: 24463710 [TBL] [Abstract][Full Text] [Related]
17. Enhanced mobility of fullerene (C60) nanoparticles in the presence of stabilizing agents. Wang Y; Li Y; Costanza J; Abriola LM; Pennell KD Environ Sci Technol; 2012 Nov; 46(21):11761-9. PubMed ID: 22973990 [TBL] [Abstract][Full Text] [Related]
18. Enhanced transport of 2,2',5,5'-polychlorinated biphenyl by natural organic matter (NOM) and surfactant-modified fullerene nanoparticles (nC60). Wang L; Huang Y; Kan AT; Tomson MB; Chen W Environ Sci Technol; 2012 May; 46(10):5422-9. PubMed ID: 22500825 [TBL] [Abstract][Full Text] [Related]
19. Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Ju-Nam Y; Lead JR Sci Total Environ; 2008 Aug; 400(1-3):396-414. PubMed ID: 18715626 [TBL] [Abstract][Full Text] [Related]
20. Engineered nanoparticles in wastewater and wastewater sludge--evidence and impacts. Brar SK; Verma M; Tyagi RD; Surampalli RY Waste Manag; 2010 Mar; 30(3):504-20. PubMed ID: 19926463 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]