These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 22683828)

  • 21. Simulated environmental risk estimation of engineered nanomaterials: a case of cosmetics in Johannesburg City.
    Musee N
    Hum Exp Toxicol; 2011 Sep; 30(9):1181-95. PubMed ID: 21148195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contaminant-mobilizing capability of fullerene nanoparticles (nC60): Effect of solvent-exchange process in nC60 formation.
    Wang L; Fortner JD; Hou L; Zhang C; Kan AT; Tomson MB; Chen W
    Environ Toxicol Chem; 2013 Feb; 32(2):329-36. PubMed ID: 23172734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The release of engineered nanomaterials to the environment.
    Gottschalk F; Nowack B
    J Environ Monit; 2011 May; 13(5):1145-55. PubMed ID: 21387066
    [TBL] [Abstract][Full Text] [Related]  

  • 24. UV irradiation and humic acid mediate aggregation of aqueous fullerene (nC₆₀) nanoparticles.
    Qu X; Hwang YS; Alvarez PJ; Bouchard D; Li Q
    Environ Sci Technol; 2010 Oct; 44(20):7821-6. PubMed ID: 20866048
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The carcinogenic potential of nanomaterials, their release from products and options for regulating them.
    Becker H; Herzberg F; Schulte A; Kolossa-Gehring M
    Int J Hyg Environ Health; 2011 Jun; 214(3):231-8. PubMed ID: 21168363
    [TBL] [Abstract][Full Text] [Related]  

  • 26. (Photo)chlorination-induced physicochemical transformation of aqueous fullerene nC60.
    Wang C; Shang C; Ni M; Dai J; Jiang F
    Environ Sci Technol; 2012 Sep; 46(17):9398-405. PubMed ID: 22881987
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A 3-dimensional micro- and nanoparticle transport and filtration model (MNM3D) applied to the migration of carbon-based nanomaterials in porous media.
    Bianco C; Tosco T; Sethi R
    J Contam Hydrol; 2016 Oct; 193():10-20. PubMed ID: 27607520
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of natural organic matter on the physicochemical properties of aqueous C60 nanoparticles.
    Xie B; Xu Z; Guo W; Li Q
    Environ Sci Technol; 2008 Apr; 42(8):2853-9. PubMed ID: 18497134
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative photochemical reactivity of spherical and tubular fullerene nanoparticles in water under ultraviolet (UV) irradiation.
    Chae SR; Watanabe Y; Wiesner MR
    Water Res; 2011 Jan; 45(1):308-14. PubMed ID: 20708771
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of electrolyte species and concentration on the aggregation and transport of fullerene nanoparticles in quartz sands.
    Wang Y; Li Y; Pennell KD
    Environ Toxicol Chem; 2008 Sep; 27(9):1860-7. PubMed ID: 19086205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Carbon nanomaterials: their environmental behavior and effects on the transport and fate of pollutants in environment].
    Xu L; Duan L; Chen W
    Ying Yong Sheng Tai Xue Bao; 2009 Jan; 20(1):205-12. PubMed ID: 19449587
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensors as tools for quantitation, nanotoxicity and nanomonitoring assessment of engineered nanomaterials.
    Sadik OA; Zhou AL; Kikandi S; Du N; Wang Q; Varner K
    J Environ Monit; 2009 Oct; 11(10):1782-800. PubMed ID: 19809701
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A rapid screening technique for estimating nanoparticle transport in porous media.
    Bouchard D; Zhang W; Chang X
    Water Res; 2013 Aug; 47(12):4086-94. PubMed ID: 23141766
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanomaterials as possible contaminants: the fullerene example.
    Wiesner MR; Hotze EM; Brant JA; Espinasse B
    Water Sci Technol; 2008; 57(3):305-10. PubMed ID: 18309205
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transport and retention of TiO
    Hoggan JL; Sabatini DA; Kibbey TCG
    J Contam Hydrol; 2016 Nov; 194():30-35. PubMed ID: 27780094
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measurement of the physical properties of aerosols in a fullerene factory for inhalation exposure assessment.
    Fujitani Y; Kobayashi T; Arashidani K; Kunugita N; Suemura K
    J Occup Environ Hyg; 2008 Jun; 5(6):380-9. PubMed ID: 18401789
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How redox conditions and irradiation affect sorption of PAHs by dispersed fullerenes (nC60).
    Hüffer T; Kah M; Hofmann T; Schmidt TC
    Environ Sci Technol; 2013 Jul; 47(13):6935-42. PubMed ID: 23234332
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Potential release pathways, environmental fate, and ecological risks of carbon nanotubes.
    Petersen EJ; Zhang L; Mattison NT; O'Carroll DM; Whelton AJ; Uddin N; Nguyen T; Huang Q; Henry TB; Holbrook RD; Chen KL
    Environ Sci Technol; 2011 Dec; 45(23):9837-56. PubMed ID: 21988187
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extension of coupled multispecies metal transport and speciation (TRANSPEC) model to soil.
    Bhavsar SP; Gandhi N; Diamond ML
    Chemosphere; 2008 Jan; 70(5):914-24. PubMed ID: 17707882
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection and characterization of engineered nanoparticles in food and the environment.
    Tiede K; Boxall AB; Tear SP; Lewis J; David H; Hassellov M
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Jul; 25(7):795-821. PubMed ID: 18569000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.