These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 22683842)

  • 1. Self-orienting nanocubes for the assembly of plasmonic nanojunctions.
    Gao B; Arya G; Tao AR
    Nat Nanotechnol; 2012 Jun; 7(7):433-7. PubMed ID: 22683842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Synthesis and SERS characterization of silver nanocubes].
    Zhou HH; Wu DY; Hu JQ; Tian ZQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Jul; 25(7):1068-70. PubMed ID: 16241057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly. Judging a nanocube by its cover.
    Rabin O
    Nat Nanotechnol; 2012 Jul; 7(7):419-20. PubMed ID: 22760020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced Raman spectroscopy.
    Ou FS; Hu M; Naumov I; Kim A; Wu W; Bratkovsky AM; Li X; Williams RS; Li Z
    Nano Lett; 2011 Jun; 11(6):2538-42. PubMed ID: 21604751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars.
    Zhang Q; Large N; Wang H
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17255-67. PubMed ID: 25222940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly of alpha,omega-aliphatic diamines on Ag nanoparticles as an effective localized surface plasmon nanosensor based in interparticle hot spots.
    Guerrini L; Izquierdo-Lorenzo I; Garcia-Ramos JV; Domingo C; Sanchez-Cortes S
    Phys Chem Chem Phys; 2009 Sep; 11(34):7363-71. PubMed ID: 19690707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bimetallic nanostructures as active Raman markers: gold-nanoparticle assembly on 1D and 2D silver nanostructure surfaces.
    Gunawidjaja R; Kharlampieva E; Choi I; Tsukruk VV
    Small; 2009 Nov; 5(21):2460-6. PubMed ID: 19642091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of hot spots with silver nanocubes for single-molecule detection by surface-enhanced Raman scattering.
    Rycenga M; Xia X; Moran CH; Zhou F; Qin D; Li ZY; Xia Y
    Angew Chem Int Ed Engl; 2011 Jun; 50(24):5473-7. PubMed ID: 21542081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-organized silver nanoparticles for three-dimensional plasmonic crystals.
    Tao AR; Ceperley DP; Sinsermsuksakul P; Neureuther AR; Yang P
    Nano Lett; 2008 Nov; 8(11):4033-8. PubMed ID: 18928325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembled plasmonic nanostructures.
    Klinkova A; Choueiri RM; Kumacheva E
    Chem Soc Rev; 2014 Jun; 43(11):3976-91. PubMed ID: 24599020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of electromagnetic enhancement of surface enhanced hyper Raman scattering using plasmonic properties of binary active sites in single Ag nanoaggregates.
    Itoh T; Yoshikawa H; Yoshida K; Biju V; Ishikawa M
    J Chem Phys; 2009 Jun; 130(21):214706. PubMed ID: 19508086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring plasmonic substrates for surface enhanced spectroscopies.
    Lal S; Grady NK; Kundu J; Levin CS; Lassiter JB; Halas NJ
    Chem Soc Rev; 2008 May; 37(5):898-911. PubMed ID: 18443675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Electromagnetic Hot-Spots in Nanoparticle Cluster Arrays on Reflective Substrates for Highly Sensitive Detection of (Bio)molecular Analytes.
    Rastogi R; Dogbe Foli EA; Vincent R; Adam PM; Krishnamoorthy S
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):32653-32661. PubMed ID: 34242017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Out-of-Plane Plasmonic Antennas for Raman Analysis in Living Cells.
    La Rocca R; Messina GC; Dipalo M; Shalabaeva V; De Angelis F
    Small; 2015 Sep; 11(36):4632-7. PubMed ID: 26114644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitive surface-enhanced Raman spectroscopy (SERS) detection of organochlorine pesticides by alkyl dithiol-functionalized metal nanoparticles-induced plasmonic hot spots.
    Kubackova J; Fabriciova G; Miskovsky P; Jancura D; Sanchez-Cortes S
    Anal Chem; 2015 Jan; 87(1):663-9. PubMed ID: 25494815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D aluminum/silver hierarchical nanostructure with large areas of dense hot spots for surface-enhanced raman scattering.
    Zhao N; Li H; Xie Y; Feng Z; Wang Z; Yang Z; Yan X; Wang W; Tian C; Yu H
    Electrophoresis; 2019 Dec; 40(23-24):3123-3131. PubMed ID: 31576580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oriented assembly of polyhedral plasmonic nanoparticle clusters.
    Henzie J; Andrews SC; Ling XY; Li Z; Yang P
    Proc Natl Acad Sci U S A; 2013 Apr; 110(17):6640-5. PubMed ID: 23569275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic near-electric field enhancement effects in ultrafast photoelectron emission: correlated spatial and laser polarization microscopy studies of individual Ag nanocubes.
    Grubisic A; Ringe E; Cobley CM; Xia Y; Marks LD; Van Duyne RP; Nesbitt DJ
    Nano Lett; 2012 Sep; 12(9):4823-9. PubMed ID: 22845792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ Raman scattering study on a controllable plasmon-driven surface catalysis reaction on Ag nanoparticle arrays.
    Dai ZG; Xiao XH; Zhang YP; Ren F; Wu W; Zhang SF; Zhou J; Mei F; Jiang CZ
    Nanotechnology; 2012 Aug; 23(33):335701. PubMed ID: 22842646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties.
    Zhang XY; Hu A; Zhang T; Lei W; Xue XJ; Zhou Y; Duley WW
    ACS Nano; 2011 Nov; 5(11):9082-92. PubMed ID: 21955107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.