These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 22684108)
1. Paxillin mediates extranuclear and intranuclear signaling in prostate cancer proliferation. Sen A; De Castro I; Defranco DB; Deng FM; Melamed J; Kapur P; Raj GV; Rossi R; Hammes SR J Clin Invest; 2012 Jul; 122(7):2469-81. PubMed ID: 22684108 [TBL] [Abstract][Full Text] [Related]
2. Paxillin regulates androgen- and epidermal growth factor-induced MAPK signaling and cell proliferation in prostate cancer cells. Sen A; O'Malley K; Wang Z; Raj GV; Defranco DB; Hammes SR J Biol Chem; 2010 Sep; 285(37):28787-95. PubMed ID: 20628053 [TBL] [Abstract][Full Text] [Related]
3. Changes in androgen receptor nongenotropic signaling correlate with transition of LNCaP cells to androgen independence. Unni E; Sun S; Nan B; McPhaul MJ; Cheskis B; Mancini MA; Marcelli M Cancer Res; 2004 Oct; 64(19):7156-68. PubMed ID: 15466214 [TBL] [Abstract][Full Text] [Related]
4. Angiogenin mediates androgen-stimulated prostate cancer growth and enables castration resistance. Li S; Hu MG; Sun Y; Yoshioka N; Ibaragi S; Sheng J; Sun G; Kishimoto K; Hu GF Mol Cancer Res; 2013 Oct; 11(10):1203-14. PubMed ID: 23851444 [TBL] [Abstract][Full Text] [Related]
5. 6-(3,4-Dihydro-1H-isoquinoline-2-yl)-N-(6-methoxypyridine-2-yl) nicotinamide-26 (DIMN-26) decreases cell proliferation by induction of apoptosis and downregulation of androgen receptor signaling in human prostate cancer cells. Choi HE; Shin JS; Leem DG; Kim SD; Cho WJ; Lee KT Chem Biol Interact; 2016 Dec; 260():196-207. PubMed ID: 27720946 [TBL] [Abstract][Full Text] [Related]
6. RhoA as a mediator of clinically relevant androgen action in prostate cancer cells. Schmidt LJ; Duncan K; Yadav N; Regan KM; Verone AR; Lohse CM; Pop EA; Attwood K; Wilding G; Mohler JL; Sebo TJ; Tindall DJ; Heemers HV Mol Endocrinol; 2012 May; 26(5):716-35. PubMed ID: 22456196 [TBL] [Abstract][Full Text] [Related]
7. A Signaling Network Controlling Androgenic Repression of c-Fos Protein in Prostate Adenocarcinoma Cells. Shankar E; Song K; Corum SL; Bane KL; Wang H; Kao HY; Danielpour D J Biol Chem; 2016 Mar; 291(11):5512-5526. PubMed ID: 26786102 [TBL] [Abstract][Full Text] [Related]
8. The ETS domain transcription factor ELK1 directs a critical component of growth signaling by the androgen receptor in prostate cancer cells. Patki M; Chari V; Sivakumaran S; Gonit M; Trumbly R; Ratnam M J Biol Chem; 2013 Apr; 288(16):11047-65. PubMed ID: 23426362 [TBL] [Abstract][Full Text] [Related]
9. The CXCL12/CXCR4 axis promotes ligand-independent activation of the androgen receptor. Kasina S; Macoska JA Mol Cell Endocrinol; 2012 Apr; 351(2):249-63. PubMed ID: 22245379 [TBL] [Abstract][Full Text] [Related]
10. Rapid signalling by androgen receptor in prostate cancer cells. Peterziel H; Mink S; Schonert A; Becker M; Klocker H; Cato AC Oncogene; 1999 Nov; 18(46):6322-9. PubMed ID: 10597231 [TBL] [Abstract][Full Text] [Related]
11. Paxillin regulated genomic networks in prostate cancer. Ma X; Biswas A; Hammes SR Steroids; 2019 Nov; 151():108463. PubMed ID: 31344408 [TBL] [Abstract][Full Text] [Related]
12. Androgen receptor survival signaling is blocked by anti-beta2-microglobulin monoclonal antibody via a MAPK/lipogenic pathway in human prostate cancer cells. Huang WC; Zhau HE; Chung LW J Biol Chem; 2010 Mar; 285(11):7947-56. PubMed ID: 20071336 [TBL] [Abstract][Full Text] [Related]
13. Phosphorylation of HSP90 by protein kinase A is essential for the nuclear translocation of androgen receptor. Dagar M; Singh JP; Dagar G; Tyagi RK; Bagchi G J Biol Chem; 2019 May; 294(22):8699-8710. PubMed ID: 30992362 [TBL] [Abstract][Full Text] [Related]
14. Cyclin-dependent kinase 5 modulates STAT3 and androgen receptor activation through phosphorylation of Ser⁷²⁷ on STAT3 in prostate cancer cells. Hsu FN; Chen MC; Lin KC; Peng YT; Li PC; Lin E; Chiang MC; Hsieh JT; Lin H Am J Physiol Endocrinol Metab; 2013 Oct; 305(8):E975-86. PubMed ID: 23941877 [TBL] [Abstract][Full Text] [Related]
15. Strategy for Tumor-Selective Disruption of Androgen Receptor Function in the Spectrum of Prostate Cancer. Rosati R; Polin L; Ducker C; Li J; Bao X; Selvakumar D; Kim S; Xhabija B; Larsen M; McFall T; Huang Y; Kidder BL; Fribley A; Saxton J; Kakuta H; Shaw P; Ratnam M Clin Cancer Res; 2018 Dec; 24(24):6509-6522. PubMed ID: 30185422 [TBL] [Abstract][Full Text] [Related]
16. The Amino-terminal Domain of the Androgen Receptor Co-opts Extracellular Signal-regulated Kinase (ERK) Docking Sites in ELK1 Protein to Induce Sustained Gene Activation That Supports Prostate Cancer Cell Growth. Rosati R; Patki M; Chari V; Dakshnamurthy S; McFall T; Saxton J; Kidder BL; Shaw PE; Ratnam M J Biol Chem; 2016 Dec; 291(50):25983-25998. PubMed ID: 27793987 [TBL] [Abstract][Full Text] [Related]
18. Vasoactive intestinal peptide transactivates the androgen receptor through a protein kinase A-dependent extracellular signal-regulated kinase pathway in prostate cancer LNCaP cells. Xie Y; Wolff DW; Lin MF; Tu Y Mol Pharmacol; 2007 Jul; 72(1):73-85. PubMed ID: 17430995 [TBL] [Abstract][Full Text] [Related]
19. Activation of GPR30 inhibits the growth of prostate cancer cells through sustained activation of Erk1/2, c-jun/c-fos-dependent upregulation of p21, and induction of G(2) cell-cycle arrest. Chan QK; Lam HM; Ng CF; Lee AY; Chan ES; Ng HK; Ho SM; Lau KM Cell Death Differ; 2010 Sep; 17(9):1511-23. PubMed ID: 20203690 [TBL] [Abstract][Full Text] [Related]
20. LINE-1 ORF-1p functions as a novel androgen receptor co-activator and promotes the growth of human prostatic carcinoma cells. Lu Y; Feng F; Yang Y; Gao X; Cui J; Zhang C; Zhang F; Xu Z; Qv J; Wang C; Zeng Z; Zhu Y; Yang Y Cell Signal; 2013 Feb; 25(2):479-89. PubMed ID: 23153584 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]