These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 22684332)

  • 1. Preparation and electrochemical performances of doughnut-like Ni(OH)₂-Co(OH)₂ composites as pseudocapacitor materials.
    Li J; Yang M; Wei J; Zhou Z
    Nanoscale; 2012 Aug; 4(15):4498-503. PubMed ID: 22684332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials.
    Wang H; Casalongue HS; Liang Y; Dai H
    J Am Chem Soc; 2010 Jun; 132(21):7472-7. PubMed ID: 20443559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrathin β-Ni(OH)2 nanoplates vertically grown on nickel-coated carbon nanotubes as high-performance pseudocapacitor electrode materials.
    Ma X; Li Y; Wen Z; Gao F; Liang C; Che R
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):974-9. PubMed ID: 25514200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile in situ synthesis of hierarchical porous Ni/Ni(OH)₂ hybrid sponges with excellent electrochemical energy-storage performances for supercapacitors.
    Wang W; Wang W; Wang M; Guo X
    Chem Asian J; 2014 Sep; 9(9):2590-6. PubMed ID: 25048538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Great improvement in pseudocapacitor properties of nickel hydroxide via simple gold deposition.
    Kim SI; Thiyagarajan P; Jang JH
    Nanoscale; 2014 Oct; 6(20):11646-52. PubMed ID: 25154383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembling Ni(OH)
    Li Z; Zhang W; Su Y; Li Z; Groeper J
    Nanotechnology; 2017 Jan; 28(4):045603. PubMed ID: 27991450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An electrochemical capacitor electrode based on porous carbon spheres hybrided with polyaniline and nanoscale ruthenium oxide.
    Zhao D; Guo X; Gao Y; Gao F
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5583-9. PubMed ID: 22988980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-aqueous approach to the preparation of reduced graphene oxide/α-Ni(OH)2 hybrid composites and their high capacitance behavior.
    Lee JW; Ahn T; Soundararajan D; Ko JM; Kim JD
    Chem Commun (Camb); 2011 Jun; 47(22):6305-7. PubMed ID: 21483927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructured cobalt hydroxide thin films as high performance pseudocapacitor electrodes by graphene oxide wrapping.
    Bae S; Cha JH; Lee JH; Jung DY
    Dalton Trans; 2015 Sep; 44(36):16119-26. PubMed ID: 26289720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanostructured (Co, Ni)-based compounds coated on a highly conductive three dimensional hollow carbon nanorod array (HCNA) scaffold for high performance pseudocapacitors.
    Wan L; Xiao J; Xiao F; Wang S
    ACS Appl Mater Interfaces; 2014 May; 6(10):7735-42. PubMed ID: 24755163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile preparation and enhanced capacitance of the polyaniline/sodium alginate nanofiber network for supercapacitors.
    Li Y; Zhao X; Xu Q; Zhang Q; Chen D
    Langmuir; 2011 May; 27(10):6458-63. PubMed ID: 21488622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures.
    Subramanian V; Zhu H; Vajtai R; Ajayan PM; Wei B
    J Phys Chem B; 2005 Nov; 109(43):20207-14. PubMed ID: 16853612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Template-free approach to synthesize hierarchical porous nickel cobalt oxides for supercapacitors.
    Chang J; Sun J; Xu C; Xu H; Gao L
    Nanoscale; 2012 Nov; 4(21):6786-91. PubMed ID: 23001031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spherical α-Ni(OH)2 nanoarchitecture grown on graphene as advanced electrochemical pseudocapacitor materials.
    Yang S; Wu X; Chen C; Dong H; Hu W; Wang X
    Chem Commun (Camb); 2012 Mar; 48(22):2773-5. PubMed ID: 22314260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nickel hydroxide-carbon nanotube nanocomposites as supercapacitor electrodes: crystallinity dependent performances.
    Jiang W; Zhai S; Wei L; Yuan Y; Yu D; Wang L; Wei J; Chen Y
    Nanotechnology; 2015 Aug; 26(31):314003. PubMed ID: 26186042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct growth of cobalt hydroxide rods on nickel foam and its application for energy storage.
    Salunkhe RR; Bastakoti BP; Hsu CT; Suzuki N; Kim JH; Dou SX; Hu CC; Yamauchi Y
    Chemistry; 2014 Mar; 20(11):3084-8. PubMed ID: 24522895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving electrochemical performance of polyaniline by introducing carbon aerogel as filler.
    Xu F; Zheng G; Wu D; Liang Y; Li Z; Fu R
    Phys Chem Chem Phys; 2010 Apr; 12(13):3270-5. PubMed ID: 20237718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-Situ Fabrication of Graphene Oxide Hybrid Ni-Based Metal-Organic Framework (Ni-MOFs@GO) with Ultrahigh Capacitance as Electrochemical Pseudocapacitor Materials.
    Zhou Y; Mao Z; Wang W; Yang Z; Liu X
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):28904-28916. PubMed ID: 27696813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical insights into the roles of nanowire cores on the growth and supercapacitor performances of Ni-Co-O/Ni(OH)₂ core/shell electrodes.
    Yin X; Tang C; Zhang L; Yu ZG; Gong H
    Sci Rep; 2016 Feb; 6():21566. PubMed ID: 26857606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactive effects of pore size control and carbonization temperatures on supercapacitive behaviors of porous carbon/carbon nanotube composites.
    Kim JI; Rhee KY; Park SJ
    J Colloid Interface Sci; 2012 Jul; 377(1):307-12. PubMed ID: 22494688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.