These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 22684628)

  • 1. FunciSNP: an R/bioconductor tool integrating functional non-coding data sets with genetic association studies to identify candidate regulatory SNPs.
    Coetzee SG; Rhie SK; Berman BP; Coetzee GA; Noushmehr H
    Nucleic Acids Res; 2012 Oct; 40(18):e139. PubMed ID: 22684628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the identification of potential regulatory variants within genome wide association candidate SNP sets.
    Chen CY; Chang IS; Hsiung CA; Wasserman WW
    BMC Med Genomics; 2014 Jun; 7():34. PubMed ID: 24920305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants.
    Ward LD; Kellis M
    Nucleic Acids Res; 2012 Jan; 40(Database issue):D930-4. PubMed ID: 22064851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive functional annotation of seventy-one breast cancer risk Loci.
    Rhie SK; Coetzee SG; Noushmehr H; Yan C; Kim JM; Haiman CA; Coetzee GA
    PLoS One; 2013; 8(5):e63925. PubMed ID: 23717510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TAGOOS: genome-wide supervised learning of non-coding loci associated to complex phenotypes.
    González A; Artufel M; Rihet P
    Nucleic Acids Res; 2019 Aug; 47(14):e79. PubMed ID: 31045203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data integration for functional annotation of regulatory single nucleotide polymorphisms associated with Alzheimer's disease susceptibility.
    Amber S; Zahid S
    Gene; 2018 Sep; 672():115-125. PubMed ID: 29883757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linking disease associations with regulatory information in the human genome.
    Schaub MA; Boyle AP; Kundaje A; Batzoglou S; Snyder M
    Genome Res; 2012 Sep; 22(9):1748-59. PubMed ID: 22955986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SNPhood: investigate, quantify and visualise the epigenomic neighbourhood of SNPs using NGS data.
    Arnold C; Bhat P; Zaugg JB
    Bioinformatics; 2016 Aug; 32(15):2359-60. PubMed ID: 27153574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SNPsnap: a Web-based tool for identification and annotation of matched SNPs.
    Pers TH; Timshel P; Hirschhorn JN
    Bioinformatics; 2015 Feb; 31(3):418-20. PubMed ID: 25316677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncovering networks from genome-wide association studies via circular genomic permutation.
    Cabrera CP; Navarro P; Huffman JE; Wright AF; Hayward C; Campbell H; Wilson JF; Rudan I; Hastie ND; Vitart V; Haley CS
    G3 (Bethesda); 2012 Sep; 2(9):1067-75. PubMed ID: 22973544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional analysis of the 11q23.3 glioma susceptibility locus implicates PHLDB1 and DDX6 in glioma susceptibility.
    Baskin R; Woods NT; Mendoza-Fandiño G; Forsyth P; Egan KM; Monteiro AN
    Sci Rep; 2015 Nov; 5():17367. PubMed ID: 26610392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DistiLD Database: diseases and traits in linkage disequilibrium blocks.
    Pallejà A; Horn H; Eliasson S; Jensen LJ
    Nucleic Acids Res; 2012 Jan; 40(Database issue):D1036-40. PubMed ID: 22058129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A genome-wide survey for SNPs altering microRNA seed sites identifies functional candidates in GWAS.
    Richardson K; Lai CQ; Parnell LD; Lee YC; Ordovas JM
    BMC Genomics; 2011 Oct; 12():504. PubMed ID: 21995669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ICSNPathway: identify candidate causal SNPs and pathways from genome-wide association study by one analytical framework.
    Zhang K; Chang S; Cui S; Guo L; Zhang L; Wang J
    Nucleic Acids Res; 2011 Jul; 39(Web Server issue):W437-43. PubMed ID: 21622953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies.
    Xu Z; Taylor JA
    Nucleic Acids Res; 2009 Jul; 37(Web Server issue):W600-5. PubMed ID: 19417063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tagging SNP-set selection with maximum information based on linkage disequilibrium structure in genome-wide association studies.
    Wang S; He S; Yuan F; Zhu X
    Bioinformatics; 2017 Jul; 33(14):2078-2081. PubMed ID: 28334342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of breast cancer associated variants that modulate transcription factor binding.
    Liu Y; Walavalkar NM; Dozmorov MG; Rich SS; Civelek M; Guertin MJ
    PLoS Genet; 2017 Sep; 13(9):e1006761. PubMed ID: 28957321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SNP-based pathway enrichment analysis for genome-wide association studies.
    Weng L; Macciardi F; Subramanian A; Guffanti G; Potkin SG; Yu Z; Xie X
    BMC Bioinformatics; 2011 Apr; 12():99. PubMed ID: 21496265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post genome-wide association studies functional characterization of prostate cancer risk loci.
    Jiang J; Cui W; Vongsangnak W; Hu G; Shen B
    BMC Genomics; 2013; 14 Suppl 8(Suppl 8):S9. PubMed ID: 24564736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Many inflammatory bowel disease risk loci include regions that regulate gene expression in immune cells and the intestinal epithelium.
    Mokry M; Middendorp S; Wiegerinck CL; Witte M; Teunissen H; Meddens CA; Cuppen E; Clevers H; Nieuwenhuis EE
    Gastroenterology; 2014 Apr; 146(4):1040-7. PubMed ID: 24333384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.